DOI QR코드

DOI QR Code

암모니아로부터 수소 제조를 위한 다양한 촉매 활성 테스트에 관한 연구

A Study on Activity Testing of Various Catalysts for Hydrogen Production from Ammonia

  • 이재혁 (원익머트리얼즈 기술연구소) ;
  • 신경하 (국립순천대학교 고분자.화학.화학공학과) ;
  • 강진실 (국립순천대학교 고분자.화학.화학공학과) ;
  • 신현희 (국립순천대학교 화학공학과) ;
  • 박세연 (국립순천대학교 화학공학과) ;
  • 최유진 (국립순천대학교 화학공학과) ;
  • 송완규 (국립순천대학교 화학공학과) ;
  • 안호근 (국립순천대학교 화학공학과)
  • JAE-HYEOK LEE (Wonik Materials R&D Center) ;
  • KYOUNG-HA SHIN (Department of Polymer․Chemical․Chemical Engineering, Sunchon National University) ;
  • JINSIL KANG (Department of Polymer․Chemical․Chemical Engineering, Sunchon National University) ;
  • HYEONHUI SHIN (Department of Chemical Engineering, Sunchon National University) ;
  • SEYEON PARK (Department of Chemical Engineering, Sunchon National University) ;
  • YUJIN CHOI (Department of Chemical Engineering, Sunchon National University) ;
  • WANGYU SONG (Department of Chemical Engineering, Sunchon National University) ;
  • HO-GEUN AHN (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2023.11.10
  • 심사 : 2023.11.23
  • 발행 : 2023.12.30

초록

This research project focused on the production of hydrogen through ammonia decomposition reactions while investigating how the reactivity of this process varies when employing different catalysts. Several metal oxide supports (Al2O3, La2O3, CeO2) were utilized as catalysts, with active metals from both the transition metal group (Co, Ni, Fe, Cr, Cu) and the noble metal group (Ru, Rh, Pd, Pt) impregnated onto these supports. Furthermore, the study examined how the reactivity evolves with changes in reaction temperature when employing the prepared catalysts. Additionally, the research delved into the distinctive activation energies associated with each of the catalysts. In this research, In the noble metal catalyst system, the order of high activity for ammonia decomposition reaction to produce hydrogen is Ru > Rh > Pt ≈ Pd. In the transition metal catalyst system, the order of high activity is Co > Ni > Fe > Cr > Cu.

키워드

과제정보

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-002).

참고문헌

  1. R. York and S. E. Bell, "Energy transitions or additions?: why a transition from fossil fuels requires more than the growth of renewable energy", Energy Research & Social Science, Vol. 51, 2019, pp. 40-43, doi: https://doi.org/10.1016/j.erss.2019.01.008. 
  2. W. A. Braff, J. M. Mueller, and J. E. Trancik, "Value of storage technologies for wind and solar energy", Nature Climate Change, Vol. 6, No. 10, 2016, pp. 964-969, doi: https://doi.org/10.1038/nclimate3045. 
  3. J. Markard, "The next phase of the energy transition and its implications for research and policy", Nature Energy, Vol. 3, No. 8, 2018, pp. 628-633, doi: https://doi.org/10.1038/s41560-018-0171-7. 
  4. International Energy Agency (IEA), "Renewables 2020: analysis and forecast to 2025", IEA, 2020. Retrieved from https://www.iea.org/reports/renewables-2020. 
  5. M. Balat, "Potential importance of hydrogen as a future solution to environmental and transportation problems", International Journal of Hydrogen Energy, Vol. 33, No. 15, 2008, pp. 4013-4029, doi: https://doi.org/10.1016/j.ijhydene.2008.05.047. 
  6. A. Demirbas and K. Dincer, "Sustainable green diesel: a futuristic view", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 30, No. 13, 2008, pp. 1233-1241, doi: https://doi.org/10.1080/15567030601082829. 
  7. V. Pattabathula and J. Richardson, "Introduction to ammonia production", CEP Magazine, Vol. 112, No. 9, 2016, pp. 69-75. Retrieved from https://www.aiche.org/sites/default/files/cep/20160969.pdf. 
  8. B. Elvers and G. Bellussi, "Ullmann's encyclopedia of industrial chemistry", 7th ed, Vol. 3, 2011, pp. 1-88, doi: https://doi.org/10.1002/14356007.o02_o11. 
  9. A. Barona, B. Etxebarria, A. Aleksanyan, G. Gallastegui, N. Rojo, and E. Diaz-Tena, "A unique historical case to understand the present sustainable development", Science and Engineering Ethics, Vol. 24, 2018, pp. 261-274, doi: https://doi.org/10.1007/s11948-017-9891-5. 
  10. The Royal Society, "Ammonia: zero-carbon fertiliser, fuel and energy store", The Royal Society, 2020. Retrieved from https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf. 
  11. D. K. Lim, A. B. Plymill, H. Paik, X. Qian, S. Zecevic, C. R. I. Chisholm, and S. M. Haile, "Solid acid electrochemical cell for the production of hydrogen from ammonia", Joule, Vol. 4, No. 11, 2020, pp. 2338-2347, doi: https://doi.org/10.1016/j.joule.2020.10.006. 
  12. S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. van der Gryp, and D. G. Bessarabov, "Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review", International Journal of Hydrogen Energy, Vol. 38, No. 35, 2013, pp. 14968-14991, doi: https://doi.org/10.1016/j.ijhydene.2013.09.067. 
  13. C. Chen, K. Wu, H. Ren, C. Zhou, Y. Luo, L. Lin, C. Au, and L. Jiang, "Ru-based catalysts for ammonia decomposition: a mini-review", Energy & Fuels, Vol. 35, No. 15, 2021, pp. 11 693-11706, doi: https://doi.org/10.1021/acs.energyfuels.1c01261. 
  14. J. Woo, T. Kim, J. E. Kim, B. Cho, S. Jung, S. Park, S. Lee, and J. Kim, "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Journal of Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 464-469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464. 
  15. S. Kang, J. Cha, Y. S. Jo, Y. J. Lee, H. Sohn, Y. Kim, C. K. Song, Y. Kim, D. H. Lim, J. Park, and C. W. Yoon, "Heteroepitaxial growth of B5-site-rich Ru nanoparticles guided by hexago-nal boron nitride for low-temperature ammonia dehydrog-enation", Advanced Materials, Vol. 35, No. 4, 2023, pp. 2203364, doi: https://doi.org/10.1002/adma.202203364. 
  16. G. Papapolymerou and V. Bontozoglou, "Decomposition of NH3 on Pd and Ir comparison with Pt and Rh", Journal of Molecular Catalysis A: Chemical, Vol. 120, No. 1-3, 1997, pp. 165-171, doi: https://doi.org/10.1016/S1381-1169(96)00428-1. 
  17. G. Li, X. Yu, F. Yin, Z. Lei, H. Zhang, and X. He, "Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts", Catalysis Today, Vol. 402, 2022, pp, 45-51, doi: https://doi.org/10.1016/j.cattod.2022.02.020. 
  18. J. C. Ganley, F. S. Thomas, E. G. Seebauer, and R. I. Masel, "A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia", Catalysis Letters, Vol. 96, No. 3-4, 2004, pp. 117-122, doi: https://doi.org/10.1023/B:CATL.0000030108.50691.d4. 
  19. M. Pinzon, A. Sanchez-Sanchez, P. Sanchez, A. R. de la Osa, and A. Romero, "Ammonia as a carrier for hydrogen production by using lanthanum based perovskites", Energy Conversion and Management, Vol. 246, 2021, pp. 114681, doi: https://doi.org/10.1016/j.enconman.2021.114681.