DOI QR코드

DOI QR Code

농업부산물과 우분의 병합 소화를 통한 메탄 생산

Methane Production from the Co-digestion of Cattle Manure and Agricultural Residues

  • 김재경 (전남대학교 농생명화학과) ;
  • 허정민 (전남대학교 농생명화학과) ;
  • 조흠 (서울대학교 건설환경공학부) ;
  • 홍진경 (연세대학교 환경에너지공학과) ;
  • 조은혜 (전남대학교 농생명화학과)
  • Jae Gyeong Kim (Department of Agricultural and Biological Chemistry, Chonnam National University) ;
  • Jeong Min Heo (Department of Agricultural and Biological Chemistry, Chonnam National University) ;
  • Xin Zhao (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jin-Kyung Hong (Department of Environmental and Energy Engineering, Yonsei University) ;
  • Eun Hea Jho (Department of Agricultural and Biological Chemistry, Chonnam National University)
  • 투고 : 2023.12.10
  • 심사 : 2023.12.21
  • 발행 : 2023.12.31

초록

본 연구에서는 볏짚과 토마토와 같은 농업부산물이 우분의 혐기성 소화를 통한 메탄 생성에 미치는 영향을 알아보기 위해 각 기질을 단독 소화한 것과 혼합 소화한 것을 비교하였다. 우분의 경우 토마토와 병합 소화했을 때 우분 단독 소화 시보다 메탄 생성량이 증가하였고, 혼합 기질 내 토마토 함량이 중요한 역할을 하였다. 본 연구를 통해 농업부산물을 활용한 분뇨의 바이오가스화 향상 가능성을 확인하였다.

Large amounts of organic wastes generated in agricultural environments such as crop residues and livestock manure adversely affect the environment. Anaerobic digestion can reduce the amount of organic wastes and convert them into energy at the same time. Efforts are being made to further increase the energy conversion efficiency by using co-anaerobic digestion using two or more substrates. Tomatoes, rice straw, cattle manure, and cattle feces (CF) were used as substrates for anaerobic digestion. Each substrate was subjected to anaerobic digestion and the cumulative biochemical methane production potential was measured, and the biodegradability was calculated. Based on the methane production, CF and tomato were further used for co-anaerobic digestion at different mixing ratios. Among the CF:tomato ratios of 1:1, 1:2, and 2:1, 1:2 produced the most methane and the synergy index was greater 1 indicating that the co-digestion of CF and tomato improved the methane production. Overall, the results showed that the methane production from cattle manure can be improved using tomato residues.

키워드

과제정보

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). This article was also supported by the NRF (NRF-2021R1A2C4001746).

참고문헌

  1. Laborde D, Mamun A, Martin W, Pineiro V, Vos R (2021) Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12, 1-9. https://doi.org/10.1038/s41467-021-22703-1.
  2. Koul B, Yakoob M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285.
  3. Shyamsundar P, Springer NP, Tallis H, Polasky S, Jat ML, Sidhu HS, Krishnapriya PP, Skiba N, Ginn W, Ahuja V et al. (2019) Fields on fire: Alternatives to crop residue burning in India. Science, 365, 536-538. https://doi.org/10.1126/science.aaw4085.
  4. Obi F, Ugwuishiwu B, Nwakaire J (2016) Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology, 35, 957-964. https://doi.org/10.4314/njt.v35i4.34.
  5. Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L et al. (2021) Technologies and perspectives for achieving carbon neutrality. The Innovation, 2, 100180. https://doi.org/10.1016/j.xinn.2021.100180.
  6. Subbarao PMV, D'Silva TC, Adlak K, Kumar S, Chandra R, Vijay VK (2023) Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environmental Research, 234, 116286. https://doi.org/10.1016/j.envres.2023.116286.
  7. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J (2018) Biogas production - A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093.
  8. Obaideen K, Abdelkareem MA, Wilberforce T, Elsaid K, Sayed ET, Maghrabie HM, Olabi AG (2022) Biogas role in achievement of the sustainable development goals: Evaluation, challenges, and guidelines. Journal of the Taiwan Institute of Chemical Engineers, 131, 104207. https://doi.org/10.1016/j.jtice.2022.104207.
  9. Li L, Li D, Sun Y, Ma L, Yuan Z, Kong X (2010) Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35, 7261-7266. https://doi.org/10.1016/j.ijhydene.2010.03.074.
  10. Li P, Li W, Sun M, Xu X, Zhang B, Sun Y (2019) Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies, 12, 26. https://doi.org/10.3390/en12010026.
  11. Li Y, Achinas S, Zhao J, Geurkink B, Krooneman J, Euverink GJW (2020) Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553-563. https://doi.org/10.1016/j.renene.2020.02.041.
  12. Nguyen VK, Chaudhary DK, Dahal RH, Trinh NH, Kim J, Chang SW, Hong Y, La DD, Nguyen XC, Ngo HH et al. (2021) Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. https://doi.org/10.1016/j.fuel.2020.119105.
  13. Khan MU, Ahring BK (2021) Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresource technology, 321, 124427. https://doi.org/10.1016/j.biortech.2020.124427.
  14. Deepanraj B, Sivasubramanian V, Jayaraj S (2014) Biogas generation through anaerobic digestion process-An overview. Research Journal of Chemistry and Environment, 18, 80-94.
  15. Nadan MK, Baroutian S (2023) Prospective of pretreatment and anaerobic digestion of dairy cow manure in Fiji. Journal of Chemical Technology and Biotechnology, 98, 1584-1597. https://doi.org/10.1002/jctb.7388.
  16. Ali SS, Elsamahy T, Abdelfattah A, Mustafa AM, Khalil MA, Mastropetros SG, Kornaros M, Sun J, Azab M (2022) Exploring the potential of anaerobic co-digestion of water hyacinth and cattle dung for enhanced biomethanation and techno-economic feasibility. Fuel, 329, 125397. https://doi.org/10.1016/j.fuel.2022.125397.
  17. Montoro SB, Lucas J, Santos DFL, Costa MSSM (2019) Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production. Journal of Cleaner Production, 226, 1082-1091. https://doi.org/10.1016/j.jclepro.2019.04.148.
  18. Bulkowska K, Mikucka W, Pokoj T (2022) Enhancement of biogas production from cattle manure using glycerine phase as a co-substrate in anaerobic digestion. Fuel, 317, 123456. https://doi.org/10.1016/j.fuel.2022.123456.
  19. Li Y, Zhao J, Krooneman J, Euverink GJW (2021) Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Science of The Total Environment, 755, 142940. https://doi.org/10.1016/j.scitotenv.2020.142940.
  20. Kunatsa T, Xia X (2022) A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource Technology, 344, 126311. https://doi.org/10.1016/j.biortech.2021.126311.
  21. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater. APHA: Washington DC, USA.
  22. Banerjee S, Prasad N, Selvaraju S (2022) Reactor design for biogas production-A short review. Journal of Energy and Power Technology, 4, 1-22. https://doi.org/10.21926/jept.2201004.
  23. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A, Kalyuzhnyi S, Jenicek P, Van Lier J (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59, 927-934. https://doi.org/10.2166/wst.2009.040.
  24. Park SY, Jang JA, Zhao X, Hong JK, Jho EH (2022) Effect of rice straw on methane production potential of cow manure. Korean Journal of Environmental Agriculture, 41, 71-81. https://doi.org/10.5338/KJEA.2022.41.2.10.
  25. Calabro PS, Greco R, Evangelou A, Komilis D (2015) Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. Journal of Environmental Management, 163, 49-52. https://doi.org/10.1016/j.jenvman.2015.07.061.
  26. Amin FR, Khalid H, Li W, Chen C, Liu G (2021) Enhanced methane production and energy potential from rice straw by employing microaerobic pretreatment via anaerobic digestion. Journal of Cleaner Production, 296, 126434. https://doi.org/10.1016/j.jclepro.2021.126434.
  27. Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques - A review. Bioresource Technology, 95, 1-10. https://doi.org/10.1016/j.biortech.2004.02.010.
  28. Puyuelo B, Ponsa S, Gea T, Sanchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85, 653-659. https://doi.org/10.1016/j.chemosphere.2011.07.014.
  29. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15, 821-826. https://doi.org/10.1016/j.rser.2010.07.042.
  30. Weiland P (2010) Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7.
  31. Li Y, Li Y, Zhang D, Li G, Lu J, Li S (2016) Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production. Bioresource Technology, 217, 50-55. https://doi.org/10.1016/j.biortech.2016.01.111.
  32. Pinela SR, Rodrigues RP, Quina MJ (2019) Management of tomato waste: Biomethane production and nutrient recovery. In Wastes: Solutions, Treatments and Opportunities III: Selected Papers from the 5th International Conference Wastes 2019, p. 87, CRC Press, Lisbon, Portugal.
  33. Szilagyi A, Bodor A, Tolvai N, Kovacs KL, Bodai L, Wirth R, Bagi Z, Szepesi A, Marko V, Kakuk B et al. (2021) A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLoS One, 16, e0248654. https://doi.org/10.1371/journal.pone.0248654.
  34. Xiao B, Tang X, Zhang W, Zhang K, Yang T, Han Y, Liu J (2022) Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture. Energy, 239, 122021. https://doi.org/10.1016/j.energy.2021.122021.
  35. Li D, Liu S, Mi L, Li Z, Yuan Y, Yan Z, Liu X (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, 189, 319-326. https://doi.org/10.1016/j.biortech.2015.04.033.
  36. Gu Y, Chen X, Liu Z, Zhou X, Zhang Y (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresource Technology, 158, 149-155. https://doi.org/10.1016/j.biortech.2014.02.011.
  37. Ashekuzzaman SM, Poulsen TG (2011) Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresource Technology, 102, 2213-2218. https://doi.org/10.1016/j.biortech.2010.09.118.
  38. Kim J, Baek G, Kim J, Lee C (2019) Energy production from different organic wastes by anaerobic co-digestion: Maximizing methane yield versus maximizing synergistic effect. Renewable energy, 136, 683-690. https://doi.org/10.1016/j.renene.2019.01.046.