DOI QR코드

DOI QR Code

돈분 액비의 아산화질소 발생 저감 효과 검정

Verification of the Effect of Liquefied Pig Manure on Reducing Nitrous Oxide Generation

  • 이평호 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 백지현 (전남대학교 농화학과) ;
  • 구연종 (전남대학교 농화학과)
  • Pyeong Ho Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Ji Hyeon Baek (Department of Agricultural Chemistry, Chonnam National University) ;
  • Yeonjong Koo (Department of Agricultural Chemistry, Chonnam National University)
  • 투고 : 2023.12.14
  • 심사 : 2023.12.20
  • 발행 : 2023.12.31

초록

This study focused on nitrous oxide, a major greenhouse gas produced in agricultural settings through bacterial nitrogen oxidation in aerobic soil. Nitrogen fertilizer in farmland is identified as a primary source of nitrous oxide. The importance of reducing excess nitrogen in soil to mitigate nitrous oxide production is well-known. The study investigated the use of liquefied pig manure as an alternative to urea fertilizer in conventional agriculture. Results showed a more than two-fold reduction in nitrous oxide emissions in pepper cultivation areas with liquefied pig manure compared to that with urea fertilizer. The population of Nitrosospira, a nitrous oxide-producing bacterium, decreased by over 10% with liquefied pig manure. Additionally, nirK and nosZ, which are related to the denitrification process, significantly increased in the urea fertilizer group, whereas levels in the liquefied pig manure group resembled those with no nitrogen treatment. In conclusion, the experiment confirmed that liquefied pig manure can serve as an eco-friendly nitrogen fertilizer, significantly reducing nitrous oxide production, a major contributor to the atmospheric greenhouse effect.

키워드

과제정보

YK received funding from Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader Program funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no. 321001-03), and supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). PHL received funding from Rural Development Administration of Republic of Korea (PJ01431804).

참고문헌

  1. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature, 410(6829), 675-677. https://doi.org/10.1038/35070541.
  2. Lawrence NC, Tenesaca CG, VanLoocke A, Hall SJ (2021) Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences, 118(46), e2112108118. https://doi.org/10.1073/pnas.2112108118.
  3. Mosier AR (1994) Nitrous oxide emissions from agricultural soils. Fertilizer Research, 37, 191-200. https://doi.org/10.1007/BF00748937.
  4. Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, Suntharalingam P, Davidson EA, Ciais P, Jackson RB et al. (2020) A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586 (7828), 248-256. https://doi.org/10.1038/s41586-020-2780-0.
  5. Cramer ES, Briggs MS, Liu N, Mailyan B, Dwyer JR, Rassoul HK (2017) The impact on the ozone layer from NOx produced by terrestrial gamma ray flashes. Geophysical Research Letters, 44(10), 5240-5245. https://doi.org/10.1002/2017GL073215.
  6. Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annual Review of Earth and Planetary Sciences, 7(1), 443-472. https://doi.org/10.1146/annurev.ea.07.050179.002303
  7. Tian H, Yang J, Xu , Lu C, Canadell JG, Davidson E, Jackson RB, Arneth A, Chang JF et al. (2019) Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 25(2), 640-659. https://doi.org/10.1111/gcb.14514.
  8. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123-125. https://doi.org/10.1126/science.1176985.
  9. Yue Q, Wu H, Sun JF, Cheng K, Smith P, Hillier J, Xu XR, Pan GX(2019) Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environmental Science & Technology, 53(17), 10246-10257. https://doi.org/10.1021/acs.est.9b01285.
  10. Thompson RL, Lassaletta L, Patra PK, Wilson C, Wells KC, Gressent A, Koffi EN, Chipperfield MP, Winiwarter W et al. (2019) Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 9(12), 993-998. https://doi.org/10.1038/s41558-019-0613-7.
  11. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K(1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Progress in Nitrogen Cycling Studies, 589-602. https://doi.org/10.1007/978-94-011-5450-5_97.
  12. Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Bergamaschi P, Pagliari V, Olivier JGJ et al. (2019) EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012. Earth System Science Data, 11(3), 959-1002. https://doi.org/10.5194/essd-11-959-2019.
  13. Zhao Z, Cao LK, Deng J, Sha ZM, Chu CB, Zhou DP, Wu SH, Lv WG (2020) Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 178, 102743. https://doi.org/10.1016/j.agsy.2019.102743.
  14. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410-416. https://doi.org/10.1038/nclimate1458.
  15. Beauchamp EG (1997) Nitrous oxide emission from agricultural soils. Canadian Journal of Soil Science, 77(2), 113-123. https://doi.org/10.4141/S96-101.
  16. Geddes JA, Martin RV(2017) Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns. Atmospheric Chemistry and Physics, 17(16), 10071-10091. https://doi.org/10.5194/acp-17-10071-2017.
  17. Jia YL, Yu GR, Gao YN, He NP, Wang QF, Jiao CC, Zuo Y (2016) Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Scientific Reports, 6(1), 19810. https://doi.org/10.1038/srep19810.
  18. Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH et al. (2015) Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15(21), 12345-12360. https://doi.org/10.5194/acp-15-12345-2015.
  19. Stehfest E, Bouwman L (2006) NO and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207-228. https://doi.org/10.1007/s10705-006-9000-7.
  20. Giles M, Morley N, Baggs EM, Daniell TJ (2012) Soil nitrate reducing processes drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology, 3, 407. https://doi.org/10.3389/fmicb.2012.00407.
  21. Robertson G (1987) Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biology and Biochemistry, 19(2), 187-193. https://doi.org/10.1016/0038-0717(87)90080-0.
  22. Bremner JM (1997) Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49, 7-16. https://doi.org/10.1023/A:1009798022569.
  23. Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 17(3), 1497-1504. https://doi.org/10.1111/j.1365-2486.2010.02334.x.
  24. Bergaust L, Shapleigh J, Frostegard A, Bakken L (2008) Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environmental Microbiology, 10(11), 3070-3081. https://doi.org/10.1111/j.1462-2920.2007.01557.x.
  25. Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1593), 1226-1234. https://doi.org/10.1098/rstb.2011.0321.
  26. Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Applied and Environmental Microbiology, 42(6), 1074-1084. https://doi.org/10.1128/aem.426.1074-1084.1981.
  27. Thomsen JK, Geest T, Cox RP (1994) Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Applied and Environmental Microbiology, 60(2), 536-541. https://doi.org/10.1128/aem.60.2.536-541.1994.
  28. Burford J, Bremner J (1975) Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology and Biochemistry, 7(6), 389-394. https://doi.org/10.1016/0038-0717(75)90055-3.
  29. Bateman E, Baggs E(2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 41, 379-388. https://doi.org/10.1007/s00374-005-0858-3.
  30. Van den Heuvel R, Bakker S, Jetten M, Hefting M (2011) Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology, 9(3), 294-300. https://doi.org/10.1111/j.1472-4669.2011.00276.x.
  31. Cheng Y, Elrys AS, Merwad ARM, Zhang HM, Chen ZX, Zhang JB, Cai ZC, Muller C (2022) Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology, 56(6), 3791-3800. https://doi.org/10.1021/acs.est.1c07997.
  32. Pandey C, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS (2020) DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of the Total Environment, 738, 139710. https://doi.org/10.1016/j.scitotenv.2020.139710.
  33. Lai TV, Ryder MH, Rathjen JR, Bolan NS, Croxford AE, Denton MD (2021) Dissimilatory nitrate reduction to ammonium increased with rising temperature. Biology and Fertility of Soils, 57, 363-372. https://doi.org/10.1007/s00374-020-01529-x.
  34. Huygens D, Rutting T, Boeckx P, Van Cleemput O, Godoy R, Muller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biology and Biochemistry, 39 (10), 2448-2458. https://doi.org/10.1016/j.soilbio.2007.04.013.
  35. Rutting T, Huygens D, Muller C, Van Cleemput O, Godoy R, Boeckx P (2008) Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest. Biogeochemistry, 90, 243-258. https://doi.org/10.1007/s10533-008-9250-3.
  36. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C (2007) Agriculture, in: Contribution of Working Group Climate Change 2007: Mitigation of Climate Change: Working Group III Contribution to the Fourth Assessment Report of the IPCC. pp. 497-540, Cambridge University Press, UK.
  37. Lourenco KS, Cassman NA, Pijl AS, Van Veen JA, Cantarella H, Kuramae EE (2018) Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Frontiers in Microbiology, 9, 674. https://doi.org/10.3389/fmicb.2018.00674.