DOI QR코드

DOI QR Code

국내 뒷흰가는줄무늬밤나방의 미토콘드리아 게놈(mitochondrial genome) 분석

Complete Mitochondrial Genome of Mythimna loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae) in South Korea

  • 정나라 (경상국립대학교 식물의학과) ;
  • 정다경 (국립농업과학원 작물보호과) ;
  • 이관석 (국립농업과학원 작물보호과) ;
  • 이원훈 (경상국립대학교 식물의학과)
  • Na Ra Jeong (Department of Plant Medicine and Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Dagyeong Jeong (Crop Protection Division, National Institute of Agricultural Sciences, RDA) ;
  • Gwan-Seok Lee (Crop Protection Division, National Institute of Agricultural Sciences, RDA) ;
  • Wonhoon Lee (Department of Plant Medicine and Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 투고 : 2023.11.05
  • 심사 : 2023.11.27
  • 발행 : 2023.12.01

초록

뒷흰가는줄무늬밤나방은 쌀, 밀, 옥수수와 같은 농작물에 피해를 주는 해충이다. 본 연구에서는 국내 뒷흰가는줄무늬밤나방의 미토콘드리아게놈(15,314b)을 분석하였다. 13개의PCG와2개의 rRNA (13,376bp)를 연결한 서열을 사용한 계통발생 분석 결과, 뒷흰가는줄무늬밤나방과 멸강나방 사이의 가장 높은 노드 수치로 자매분류군을 형성하였다. 밤나방상과(Noctuoidea)의 각 과(Noctuidae, Euteliidae, Nolidae, Erebidae 및 Notodontidae)들은 가장 높은 노드수치로 단계통을 형성하였다.

Mythimna loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae) is a pest that damages agricultural plants, such as rice, wheat, and maize. We sequenced the entire 15,314-bp mitochondrial genome of this species. It has a typical set of genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) as well as one major non-coding A+T-rich region. Using concatenated sequences of 13 protein-coding genes and two rRNAs (13,376 bp, including gaps), phylogenetic analysis demonstrated that the sister relationship between M. loreyi and M. separata had the highest nodal support. The monophyly of each family (Noctuidae, Euteliidae, Nolidae, Erebidae, and Notodontidae) of the superfamily Noctuoidea was supported by the highest nodal support.

키워드

과제정보

This study was supported by the National Institute of Agricultural Sciences (project No: RS-2022-RD009996), Korea.

참고문헌

  1. Ahn, S.B., Kononenko, V.S., Park, K.T., 1994. New records of Noctuidae (Lepidoptera) from the Korean Peninsula (I). Ins. Koreana 11, 26-47. 
  2. Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780.  https://doi.org/10.1093/nar/27.8.1767
  3. CABI, 2023. CABI compendium. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.35593 (accessed on 28 November, 2023).
  4. Cameron, S., 2014. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 39, 400-411.  https://doi.org/10.1111/syen.12071
  5. Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540-552.  https://doi.org/10.1093/oxfordjournals.molbev.a026334
  6. El-Sherif, S.I., 1972. On the biology of Leucania loreyi Dup. (Lepidoptera, Noctuidae). Z. Angew. Entomol. 71, 104-111.  https://doi.org/10.1111/j.1439-0418.1972.tb01725.x
  7. Galarza, J.A., Mappes, J., 2021. The complete mitochondrial genome of the wood tiger moth (Arctia plantaginis) and phylogenetic analyses within Arctiinae. Mitochondrial DNA Part B-Resour. 6, 2171-2173.  https://doi.org/10.1080/23802359.2021.1945965
  8. Harai, K., 1975. The influence of rearing temperature and density of the development of two Leucania Species, L. loreyi Dup. and L. separata Walker: Lepidoptera: Noctuidae. Appl. Entomol. Zoolog. 10, 234-237.  https://doi.org/10.1303/aez.10.234
  9. Harrison, R.G., 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 4, 6-11.  https://doi.org/10.1016/0169-5347(89)90006-2
  10. Jeong, N.R., Kim, M.J., Park, J.S., Jeong, S.Y., Kim, I., 2021. Complete mitochondrial genomes of Conogethes punctiferalis and C. pinicolalis (Lepidoptera: Crambidae): Genomic comparison and phylogenetic inference in Pyraloidea. J. Asia-Pac. Entomol. 24, 1179-1186.  https://doi.org/10.1016/j.aspen.2021.10.014
  11. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.  https://doi.org/10.1093/molbev/mst010
  12. Kim, H.J., Choi, N.J., Kim, S.M., Kim, S., Choi, S.Y., Lee, B.C., 2020. Morphological differences between the two species and the occurrence of the Mythimna separata and Mythimna loreyi. In: Proceeding of 2020 fall conference of Korean Society of Applied Entomology, Suwon, Korea. Abstract p. 71. 
  13. Lanfear, R., Calcott, B., Kainer, D., Mayer, C., Stamatakis, A., 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Ecol. Evol. 14, 82. 
  14. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773.  https://doi.org/10.1093/molbev/msw260
  15. Li, F.B., Wang, W., Zhang, H.X., Shen, W.F., Xu, X.Y., Chen, J.E., Meng, Z.Q., 2015, Complete mitochondrial genome of the oriental armyworm Mythimna separata (Walker)(Lepidoptera: Noctuidae). Mitochondrial DNA Part A. 26, 881-882.  https://doi.org/10.3109/19401736.2013.861441
  16. Li, G.B., Wong, H.H., Woo, W.S., 1964. Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Acta Phytophylacica Sin. 3, 101-110. 
  17. Lopez-Vaamonde, C., Breman, F.C., Lees, D.C., Van Houdt, J., De Prins, J., 2012. Analysis of tissue dependent DNA yield for optimal sampling of micro-moths in large-scale biodiversity surveys. Eur. J. Entomol. 109, 1. 
  18. Lowe, T.M., Chan, P.P., 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54-W57.  https://doi.org/10.1093/nar/gkw413
  19. Luo, Q., Zhou, N., Yang, Z., 2021. Complete mitochondrial genome of Ostrinia kasmirica (Lepidoptera: Crambidae). Mitochondrial DNA Part B-Resour. 6, 2316-2318.  https://doi.org/10.1080/23802359.2021.1950058
  20. Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computational Environment Workshop (GCE), New Orleans, LA, USA. 
  21. Moritz, C.T.E.D., Dowling, T.E., Brown, W.M., 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269-292.  https://doi.org/10.1146/annurev.es.18.110187.001413
  22. Nam, H.Y., Kwon, M., Kim, H.J., Kim, J. 2020. Development of a species diagnostic molecular tool for an invasive pest, Mythimna loreyi, using LAMP. Insects. 11, 817. 
  23. Park, J., Xi, H., Kwon, W., Park, C.G., Lee, W., 2019. The complete mitochondrial genome sequence of Korean Chilo suppressalis (Walker, 1863) (Lepidoptera: Crambidae). Mitochondrial DNA Part B-Resour. 4, 850-851.  https://doi.org/10.1080/23802359.2019.1568216
  24. Ronquist, F., Teslenko, M., Mark, P., Daniel, L., Ayres Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542.  https://doi.org/10.1093/sysbio/sys029
  25. Sparks, T.H., Dennis, R.L.H., Croxton, P.J., Cade, M., 2007. Increased migration of Lepidoptera linked to climate change. Eur. J. Entomol. 104, 139-143.  https://doi.org/10.14411/eje.2007.019
  26. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30, 1312-1313.  https://doi.org/10.1093/bioinformatics/btu033
  27. Sun, Q.Q., Sun, X.Y., Wang, X.C., Gai, Y.H., Hu, J., Zhu, C.D., Hao, J.S., 2012. Complete sequence of the mitochondrial genome of the Japanese buff-tip moth, Phalera flavescens (Lepidoptera: Notodontidae). Genet. Mol. Res. 11, 4213-4225.  https://doi.org/10.4238/2012.September.10.2
  28. Timmermans, M.J., Lees, D.C., Simonsen, T.J. 2014. Towards a mitogenomic phylogeny of Lepidoptera. Mol. Phylogenet. Evol. 79, 169-178.  https://doi.org/10.1016/j.ympev.2014.05.031
  29. Wernersson, R., Pedersen, A.G., 2003. RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res. 31, 3537-3539.  https://doi.org/10.1093/nar/gkg609
  30. Whinnett, A., Willmott, K.R., Brower, A.V., Simpson, F., 2005. Mitochondrial DNA provides an insight into the mechanisms driving diversification in the ithomiine butterfly Hyposcada anchiala (Lepidoptera: Nymphalidae: Ithomiinae). Eur. J. Entomol. 102, 633. 
  31. Wolstenholme, D.R., 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173-216.  https://doi.org/10.1016/S0074-7696(08)62066-5
  32. Yang, J., Kong, W., 2016. The complete mitochondrial genome of Lemyra melli (Daniel) (Lepidoptera: Erebidae) and a comparative analysis within the Noctuoidea. Acta Zootaxonomica Sin. 41, 366-378. 
  33. Yang, M., Song, L., Shi, Y., Yin, Y., Wang, Y., Zhang, P., Chen, J., Lou, L., Liu, X., 2019. The complete mitochondrial genome of a medicinal insect, Hydrillodes repugnalis (Lepidoptera: Noctuoidea: Erebidae), and related phylogenetic analysis. Int. J. Biol. Macromol. 123, 485-493.  https://doi.org/10.1016/j.ijbiomac.2018.10.149
  34. Yang, X., Cameron, S.L., Lees, D.C., Xue, D., Han, H., 2015. A mitochondrial genome phylogeny of owlet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. Mol. Phylogenet. Evol. 85, 230-237.  https://doi.org/10.1016/j.ympev.2015.02.005
  35. Zhu, X.Y., Xin, Z.Z., Liu, Y., Wang, Y., Huang, Y., Yang, Z.H., Chu, X.H., Zhang, D.Z., Zhang, H.B., Zhou, C.L., Wang, J.L., Tang, B.P., Liu, Q.N., 2018. The complete mitochondrial genome of Clostera anastomosis (Lepidoptera: Notodontidae) and implication for the phylogenetic relationships of Noctuoidea species. Int. J. Biol. Macromol. 118, 1574-1583.  https://doi.org/10.1016/j.ijbiomac.2018.06.188