과제정보
본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 작물바이러스 및 병해충대응 산업화 기술개발사업의 지원(321100-3)을 받아 연구되었습니다.
참고문헌
- Bisby, F., Roskov, Y., Culham, A., Orrell, T., Nicolson, D., Paglinawan, L., Bailly, N., Appeltans, W., Kirk, P., Bourgoin, T., Baillargeon, G., Ouvrard, D., 2012. Species 2000 & ITIS catalogue of life, 2012 annual checklist. Digital resource at www.catalogueoflife.org/col/ (accessed on 13 November, 2023).
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Choi, K.R., 1997. Studies on the development of the stone leek miner, Acrolepiopsis sapporensis Matsumura (Lepidoptera: Acrolepiidae). J. Agric. Sci. Chungnam Natl. Univ. 24, 16-20.
- Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
- Federici, B.A., Park, H.W., Bideshi, D.K., Wirth, M.C., Johnson, J.J., Sakano, Y., Tang, M., 2007. Developing recombinant bacteria for control of mosquito larvae. J. Am. Mosq. Control Assoc. 23(2 Suppl), 164-175. https://doi.org/10.2987/8756-971X(2007)23[164:DRBFCO]2.0.CO;2
- Ferre, J., Real, M.D., Van Rie, J., Jansens, S., Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119-5123. https://doi.org/10.1073/pnas.88.12.5119
- Gaedike, R., 1997. Acrolepiidae. Lepidopterorum catalogus (new series), Fasc. 55. 16 pp. Association for Tropical Lepidoptera and Scientific Publishers, Gainesville, FL.
- Gahan, L.J., Pauchet, Y., Vogel, H., Heckel, D.G., 2010. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 6, e1001248.
- Hasan, M.A., Ahmed, S., Kim, Y., 2019. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Insect Biochem. Mol. Biol. 111, 103179.
- Hrithik, M.T.H., Kim, Y., 2023. Immune responses of the Asian onion moth, Acrolepiopsis sapporensis, and their genetic factors from RNA-Seq analysis. Arch. Insect Biochem. Physiol. 114, 1-21. https://doi.org/10.1002/arch.22038
- Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
- Jung, S., Kim, Y., 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39, 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
- Kang, S., Han, S., Kim, Y., 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7, 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
- Kang, S., Han, S., Kim, Y., 2005. Identification and pathogenic characteristics of two Korean isolates of Heterohabditis megidis. J. Asia Pac. Entomol. 8, 411-418. https://doi.org/10.1016/S1226-8615(08)60264-2
- Keller, B., Langenbruch, G.A., 1993. Control of coleopteran pests by Bacillus thuringiensis, pp. 167-202. in: Entwistle, P.E., Cory, J.S., Bailey, M.J., Higgs, S. (Eds.), Bacillus thuringiensis, an environmental biopesticide: theory and practice, Agricultural Publishing House, Beijing.
- Kim, E., Jung, S., Park, Y., Kim, K., Kim, Y., 2015. A novel formulation of Bacillus thuringiensis for the control of brassica leaf beetle, Phaedon brassicae. J. Econ. Entomol. 108, 2556-2565. https://doi.org/10.1093/jee/tov245
- Kim, M., Kim, T., Lim, J., Cho, S., 2013. New record of the leek moth, Acrolepiopsis nagaimo (Lepidoptera: Acrolepiidae) from Korea. Korean J. Appl. Entomol. 52, 1-4. https://doi.org/10.5656/KSAE.2012.10.0.041
- Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001
- Kim, Y., Stanley, D., 2021. Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes 12, 211.
- Kim, Y., Stanley, D., Ahmed, S., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
- KOSTAT. 2020. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0291&conn_path=I3 (accessed on 13 November, 2023).
- Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
- Loeb, M.J., Martin, P.A., Hakim, R.S., Goto, S., Takeda, M., 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47, 599-606. https://doi.org/10.1016/S0022-1910(00)00150-5
- Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhust, R., Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Heliocoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. https://doi.org/10.1016/j.ibmb.2005.02.011
- Ohtomo, R., Chiba, T., 2001. Ecological notes on diapause and overwintering of the Allium leafminer, Acrolepiopsis sapporensis (Matsumura) (Lepidoptera: Plutellidae) in northern Japan. Jpn. J. Appl. Entomol. Ecol. 45, 123-128. https://doi.org/10.1303/jjaez.2001.123
- Pardo-Lopez, L., Soberon, M., Bravo, A., 2013. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
- Park, H., Kim, K., Park, C., Choi, Y., Lee, S., 2012. Injury characteristics of Allium leafminer, Acrolepiopsis sapporensis (Lepidoptera: Acrolepiidae) in welsh onion and damage assessment according to larval density levels during summer. Korea J. Appl. Entomol. 51, 383-388. https://doi.org/10.5656/KSAE.2012.09.0.054
- Park, Y., Jung, J., Kim, Y., 2016. A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens. J. Econ. Entomol. 109, 1086-1093. https://doi.org/10.1093/jee/tow063
- Park, Y., Lee, J., Jeong, J., Min, J., Chang, W., Kim, G., 2019. Occurrence and susceptibility to several insecticides of Thrips tabaci and Acrolepiopsis sapporensis on northern-type garlic fields in Chungbuk province. Korean J. Appl. Entomol. 58, 251-258.
- Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
- SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
- Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
- Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J., Yu, Z., 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72, 73-81. https://doi.org/10.1006/jipa.1998.4757
- Shi, Y.M., Hirschmann, M., Shi, Y.N., Ahmed, S., Abebew, D., Tobias, N.J., Grun, P., Crames, J.J., Poschel, L., Kuttenlochner, W., Richter, C., Herrmann, J., Muller, R., Thanwisai, A., Pidot, S.J., Stinear, T.P., Groll, M., Kim, Y., Bode, H.B., 2022. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nature Chem. 14, 1-21. https://doi.org/10.1038/s41557-021-00859-z
- Shimizu, N., Kuwahara, Y., 2009. Female sex pheromone of a Japanese population of allium leafminer, Acrolepiopsis sapporensis (Lepidoptera: Acrolepiidae). J. Pestic. Sci. 34, 181-183. https://doi.org/10.1584/jpestics.G09-15
- van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., Van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72-74. https://doi.org/10.1126/science.2294593
- Wright, D.J., Iqbal, M., Granero, F., Ferre, J., 1997. Change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl. Environ. Microbiol. 63, 1814-1819. https://doi.org/10.1128/aem.63.5.1814-1819.1997
- Yang, C.Y., Cho, J.R., Kang, T.J., Jeon, H.Y., 2008. Identification and field testing of sex pheromone components of a Korean population of the allium leafminer, Acrolepiopsis sapporensis. Entomol. Exp. Appl. 129, 216-222. https://doi.org/10.1111/j.1570-7458.2008.00766.x