DOI QR코드

DOI QR Code

복숭아혹진딧물, Myzus persicae, 방제를 위한 제충국, 데리스, 고삼 추출물의 살충농도와 살충시간 결정

Determination of Lethal Concentrations and Lethal Times of Extracts from Tanacetum cineariaiaefolium, Derris elliptica, and Sophora flavescens, to Control Green Peach Aphid, Myzus persicae

  • 조가희 (전남대학교 농업생명과학대학 응용생물학과) ;
  • 김효정 (전라남도 농업기술원) ;
  • 한송희 (주식회사 현농) ;
  • 김영철 (전남대학교 농업생명과학대학 응용생물학과)
  • Ka Hee Cho (Department of Applied Biology, Chonnam National University) ;
  • Hyo Jung Kim (Environment-Friendly Agriculture Research Institute, Jeollanamdo Agricultural Research & Extension Services) ;
  • Song Hee Han (Hyunnong Co., LTD) ;
  • Young Cheol Kim (Department of Applied Biology, Chonnam National University)
  • 투고 : 2023.06.30
  • 심사 : 2023.11.07
  • 발행 : 2023.12.01

초록

제충국(Tanacetum cineariaiaefolium), 데리스(Derris elliptica), 고삼(Sophora flavescens) 추출물은 다양한 해충을 방제하는데 사용되고 있다. 하지만, 국내에서 판매되고 있는 식물추춞물 자재는 유효성분의 표기가 없고, 살충농도와 살충시간에 대한 자료가 전무한 상황이다. 본 연구에서는 상용화된 주요 식물추출물의 살충유효성분의 농도를 결정하고 복숭아혹진딧물에 대해 살충농도와 살충시간을 측정하였다. 식물추출물의 살충활성성분인 pyrethrins, rotenone, matrine과 oxymatrine의 농도는 액체 크로마토그래피에서 표준물질을 활용하여 질량분석을 통해 측정하였다. 식물추출물을 농도별로 희석하여 복숭아혹진딧물에 살포하여 살충력을 측정하였다. 표준화합물과 비교한 후 질량분석 및 결정했습니다. Myzus persicae에 대한 lethal concentation과 lethal time을 조사했다. 살포 후 48시간 후 치사 농도(LC50)는 pyrethrins (20.4 ppm), roteone (34.1 ppm), matrine (29.6 ppm)였고, 100 ppm 살포한 LT50은 pyrethrins (13.4시간), rotenone (15.1시간), matrine (14.4시간)로 측정되었다. Kaplan-Meier 생존분석 결과, 100 ppm에서 세 가지 식물 추출물의 LT50은 대조구인 화학 살충제인 Sulfoxaflor를 살포 처리구보다 유의하게 빨랐습니다. 본 결과는 복숭아혹진딧물 방제를 위해 식물추출물의 제형화에 단일 또는 혼합 제제를 개발하는데 기준 살충농도와 살충시간을 제고하는데 의미가 있다.

Botanical extracts are employed in management of aphids. Extracts from Tanacetum cineariaiaefolium, Derris elliptica, and Sophora flavescens are widely used to control various insects. In this study, we determined concentrations of insecticidal active ingredients in commercial botanical extracts of these plants, and we investigated the time and concentration for lethal results with the green peach aphid, Myzus persicae. The concentrations of active ingredients, pyrethrins from T. cineariaiaefolium, rotenone from D. elliptica, and matrine and oxymatrine from S. flavescens, were determined after their fractionation by liquid chromatography followed by mass analysis and comparison with standard compounds. The extracts were tested for lethality in a bioassay with green peach aphids. Sprays at defined doses were applied to tobacco leaves infested with aphid nymphs. The lethal concentrations (LC50) were 20.4 ppm for pyrethrins, 34.1 ppm for rotenone, and 29.6 ppm for matrine at 48 h after treatments. At 100 ppm application levels, the lethal time LT50 was 13.4 h for pyrethrin, 15.1 h for rotenone, and 14.4 h for matrine. Kaplan-Meier analysis indicated the lethal times for the three botanical extracts at 100 ppm were significantly faster than application of a chemical insecticide, Sulfoxaflor, applied at the recommended level. These results provide baselines to develop and formulate single or mixed preparations containing botanical extracts to control green peach aphids on commercial crops.

키워드

과제정보

Funding was provided by the Cooperative Research Program for Agriculture Science & Technology Development (project no. RS02022-RD010417), Rural Development Administration, Republic of Korea.

참고문헌

  1. Abbott, W.S., 1925. A Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Angioni, A., Dedola, F., Minelli, E.V., Barra, A., Cabras, P., Caboni, P., 2005. Residues and half-life times of pyrethrins on peaches after field treatments. J. Agric. Food Chem. 53, 4059-4063. https://doi.org/10.1021/jf0477999
  3. Antonious, G.F., Snyder, J.C., Patel, G.A., 2001. Pyrethrins and piperonyl butoxide residues on potato leaves and in soil under field conditions. J. Environ. Sci. Health B 36, 261-271. https://doi.org/10.1081/PFC-100103568
  4. Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41-51. https://doi.org/10.1016/j.ibmb.2014.05.003
  5. Capinera, J.L., 2001. Green peach aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). in: Capinera J.L. (Ed.) Encyclopedia of Entomology. Springer, Dordrecht.
  6. Casida, J.E., Durkin, K.A., 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Ann. Rev. Entomol. 58, 99-117. https://doi.org/10.1146/annurev-ento-120811-153645
  7. Casida, J.E., Quistad, G.B., 1998. Golden age of insecticide research: past, present, or future? Annu. Rev. Entomol. 43, 1-16. https://doi.org/10.1146/annurev.ento.43.1.1
  8. Chen, M., Du, Y., Zhu, G., Takamatsu, G., Ihara, M., Matsuda, K., Zhorov, B.S., Dong, K., 2018. Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. Pestic. Biochem. Physiol. 151, 82-89. https://doi.org/10.1016/j.pestbp.2018.05.002
  9. Cho, K.H., Kim, H.J., Kim, Y.C., 2023. An optimal standardized in vitro bioassay to evaluate susceptibility of green peach aphid, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), to aphicides. Korean J. Appl. Entomol. 63, 139-147.
  10. Finney, D.J., Stevens, W.L., 1948. A table for the calculation of working probits and weights in probit analysis. Biometrika 35, 191-201. https://doi.org/10.1093/biomet/35.1-2.191
  11. Grdisa, M., Jeran, N., Varga, F., Klepo, T., Ninčević, T., Satović, Z., 2022. Accumulation patterns of six pyrethrin compounds across the flower developmental stages-Comparative analysis in six natural dalmatian pyrethrum populations. Agronomy 12, 252.
  12. Haller, H.L., Goodhue, L.D., Jones, H.A., 1942. The constituents of derris and other rotenone-bearing plants. Chem. Rev. 30, 33-48. https://doi.org/10.1021/cr60095a002
  13. He, X., Fang, J., Huang, L., Wang, J., Huang, X., 2015. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 172, 10-29. https://doi.org/10.1016/j.jep.2015.06.010
  14. Ingram, E.M., Augustin, J., Ellis, M.D., Siegfried, B.D., 2015. Evaluating sub-lethal effects of orchard-applied pyrethroids using video-tracking software to quantify honey bee behaviors. Chemosphere 135, 272-277. https://doi.org/10.1016/j.chemosphere.2015.04.022
  15. Isman, M.B., 2005. Problems and opportunities for the commercialization of botanical insecticides, in: Regnault-Roger, C., Philogene, B.J.R., Vincent, C., (Eds.), Biopesticides of plant origin. Lavoisier Publishing, Paris, pp. 283-291.
  16. Isman, M.B., 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
  17. Johnson, R.M., Wen, Z., Schuler, M.A., Berenbaum, M.R., 2006. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol. 99, 1046-1050. https://doi.org/10.1093/jee/99.4.1046
  18. Kim, D.S., 2021. A review on the insecticidal activity of neem extracts (Azadirachtin) and its corrent status of practical use in Korea. Korean J. Appl. Entomol. 60, 463-471 (Korean)
  19. Krumholz, L.A., 1948. The use of rotenone in fisheries research. J. Wildl. 12, 305-317.
  20. Lawrence, J.M., 1956. Preliminary results on the use of potassium permanganate to counteract the effects of rotenone on fish. Prog. Fish C. 18, 15-21. https://doi.org/10.1577/1548-8659(1956)18[15:PROTUO]2.0.CO;2
  21. Lengai, G.M.W., Muthomi, J.W., Mbega, E.R., 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239.
  22. Li, X., Wang, C., Li, Q., Zhu, S., Tian, X., Zhang, Y., Li, X., Gao, H., Liu, E., Wang, L., Zhu, X., 2021. Field-evolved Sulfoxaflor resistance of three wheat aphid species in China. Agronomy 11, 2325.
  23. Melo, K.M., Oliveira, R., Grisolia, C.K., Domingues, I., Pieczarka, J.C., de Souza Filho, J., Nagamachi, C.Y., 2015. Short-term exposure to low doses of rotenone induces developmental, biochemical, behavioral, and histological changes in fish. Environ. Sci. Pollut. Res. Int. 22, 13926-13938. https://doi.org/10.1007/s11356-015-4596-2
  24. Casida, J.E., Quistad, B., 1995. Pyrethrum flowers. production, chemistry, toxicology, and uses. 1st Ed., Oxford University Press, New York.
  25. Ng, J.C., Perry, K.L., 2004. Transmission of plant viruses by aphid vectors. Mol Plant Pathol. 5, 505-511. https://doi.org/10.1111/j.1364-3703.2004.00240.x
  26. Pavela, R., 2016. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects-a review. Plant Prot. Sci. 52, 229-241. https://doi.org/10.17221/31/2016-PPS
  27. Rattan, R.S., 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29, 913-920. https://doi.org/10.1016/j.cropro.2010.05.008
  28. Rattanapan, A., 2009. Effects of rotenone from derris crude extract on esterase enzyme mechanism in the beet armyworm, Spodoptera exiqua (Hubner). Commun. Agric. Appl. Biol. Sci. 74, 437-444.
  29. Robertson, D.R., Smith-Vaniz, W.F., 2008. Rotenone: an essential but demonized tool for assessing marine fish diversity. BioScience 58, 165-170. https://doi.org/10.1641/B580211
  30. Silva, A.X., Bacigalupe, L.D., Luna-Rudloff, M., Figueroa, C.C., 2012. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLOS ONE 7, e36810.
  31. Soderlund, D.M., 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch. Toxicol. 86, 165-181. https://doi.org/10.1007/s00204-011-0726-x
  32. Sparks, T.C., Watson, G.B., Loso, M.R., Geng, C., Babcock, J.M., Thomas, J.D., 2013. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Phys. 107, 1-7. https://doi.org/10.1016/j.pestbp.2013.05.014
  33. Wauchope, R.D., Butler, T.M., Hornsby, P.M., Augustin-Beckers, P.M., Burt, J.P. 1992. The SCS/ARS/CES pesticide properties database for environmental decision making. Rev. Environ. Contam. Toxicol. 123, 1-155.
  34. Wu, J., Yu, X., Wang, X., Tang, L., Ali, S., 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Front. Microbiol. 10, 1812.
  35. Xiong, X., Yao, M., Fu, L., Ma, Z.-q., Zhang, X., 2016. The botanical pesticide derived from Sophora flavescens for controlling insect pests can also improve growth and development of tomato plants. Indus. Crops and Prod. 92, 13-18. https://doi.org/10.1016/j.indcrop.2016.07.043