DOI QR코드

DOI QR Code

노지 고추재배지에 발생하는 총채벌레를 대상으로 methyl isonicotinate와 집합페로몬 혼합물을 이용한 고효율 대량유살 기술

High Efficient Mass-trapping Technique using a Mixture of Methyl Isonicotinate and Aggregation Pheromone to Control the Thrips Infesting Hot Peppers in Open Field Conditions

  • 김용균 (안동대학교 식물의학과) ;
  • 진가현 (안동대학교 식물의학과) ;
  • 박현제 (안동대학교 식물의학과) ;
  • 김철영 (안동대학교 식물의학과)
  • Yonggyun Kim (Department of Plant Medicals, Andong National University) ;
  • Gahyun Jin (Department of Plant Medicals, Andong National University) ;
  • Hyunje Park (Department of Plant Medicals, Andong National University) ;
  • Chulyoung Kim (Department of Plant Medicals, Andong National University)
  • 투고 : 2023.07.12
  • 심사 : 2023.10.13
  • 발행 : 2023.12.01

초록

대량유살 기술을 통한 총채벌레 방제 기술이 시설 고추재배지를 중심으로 개발되었다. 이 기술의 핵심 요인은 효과적 유인제 개발에 있다. 집합페로몬에 의존하였던 유인전략은 노지 재배지에서는 뚜렷한 효과를 보이지 않았다. 따라서 본 연구는 노지 고추재배지에서 총채벌레의 대량 유살을 위해 새로운 유인물질의 추가가 필요하였다. 또한 노지재배지에서 집합페로몬의 유인력 감소 원인을 규명할 필요가 있었다. 새로운 유인물질로서 methyl isonicotinate (MIN)이 제시되었고, 이 물질이 실내 유인행동분석을 통해 총채벌레에 대한 자체 유인력은 물론이고 집합페로몬과 협력효과를 보였다. 이를 바탕으로 집합페로몬과 혼합물 형태로 노지 고추재배지에서 분석한 결과 총채벌레의 포획밀도를 증가시켰다. 특히 이러한 증가는 꽃노랑총채벌레(Frankliniella occidentalis)에서 뚜렷하게 나타났다. 유인트랩에 집합페로몬의 함량 증가는 노지 고추재배지에서 꽃노랑총채벌레는 물론이고 다른 총채벌레류의 포획밀도를 뚜렷하게 증가시켰다. 본 연구는 집합페로몬 유인력이 시설재배지와 노지재배지 사이에서 차이가 있으며, 노지 재배지의 경우 효과적 유인력을 발휘하기 위해서는 더욱 많은 집합페로몬 함량을 요구한다는 것을 밝혔다. 또한 본 연구는 집합페로몬에 MIN을 추가하여 꽃노랑총채벌레에 대한 고효율 유인제를 개발할 수 있는 기술을 제시한다.

A control technique using mass-trapping was developed against thrips infesting hot peppers cultivating in greenhouses. It was essential to develop effective lure(s) attracting thrips for the control technique. Especially, mass-trapping using aggregation pheromone (AP) of the thrips was not much effective in open field cultivating hot peppers. This study aimed to develop a new lure to enhance the attractiveness of AP-based mass-trapping. In addition, this study was designed to investigate the decrease of attractiveness of the AP-based mass-trapping in the open field conditions. Methyl isonicotinate (MIN) as a new lure was assessed by the laboratory olfactometry and showed its attractiveness to thrips and its mixture effect with AP to attract the thrips. These results led us to test the AP+MIN mixture in the open field conditions cultivating hot peppers. The mixture significantly enhanced the mass-trapping efficacy in the open field conditions. Especially, the significant increase of the captured numbers was found in the western flower thrips, Frankliniella occidentalis. Furthermore, the increase of the AP concentration in the mass-trapping significantly increased the captured numbers in F. occidentalis and other thrips occurring in the hot pepper field. This study demonstrated the difference in the AP-based mass-trapping efficacy of the thrips between greenhouse and open field conditions. It also showed the increase of mass-trapping efficacy by increasing AP concentration in the trap. Especially, this study proposes a high efficient mass-trapping technology by the addition of MIN to AP especially against F. occidentalis.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578901)의 지원에 의해 이루어졌습니다.

참고문헌

  1. Akella, S.V., Kirk, W.D., Lu, Y.B., Murai, T., Walters, K.F., Hamilton, J,G., 2014. Identification of the aggregation pheromone of the melon thrips, Thrips palmi. PLoS ONE 9, e103315.
  2. Chappuis, C.J.F., Cleroux, M., Descombes, C., Barth, Y., Lefort, F., 2023. Attraction of Frankliniella occidentalis females towards the aggregation pheromone neryl (S)-2-methylbutanoate and kairomones in a Y-olfactometer. Insects 14, 562.
  3. Cho, S.W., Kyung, Y., Cho, S.R., Shin, S., Jeong, D.H., Kim, S.I., Park, G.H., Lee, S.J., Lee, Y.S., Kim, M.K., Jo, I.J., Koo, H.N., Kim, H.K., Kim, G.H., 2018. Evaluation of susceptibility of western flower thrips (Frankliniella occidentalis) and garden thrips (F. intonsa) to 51 insecticides. Korean J. Appl. Entomol. 57, 221-231.
  4. Davidson, M.M., Butler, R.C., Winkler, S., Teulon, D.A.J., 2007. Pyridine compounds increase trap capture of Frankliniella occidentalis (Pergande) in a covered crop. N. Z. Plant Prot. 60, 56-60. https://doi.org/10.30843/nzpp.2007.60.4609
  5. Davidson, M.M., Perry, N.B., Larsen, L., Green, V.C., Butler, R.C., Teulon, D.A., 2008. 4-Pyridyl carbonyl compounds as thrips lures: effectiveness for Western flower thrips in y-tube bioassays. J. Agric. Food Chem. 56, 6554-6561. https://doi.org/10.1021/jf800863t
  6. Hamilton, J.G., Hall, D.R., Kirk, W.D., 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31, 1369-1379. https://doi.org/10.1007/s10886-005-1351-z
  7. Khan, F., Roy, M.C., Kim, Y., 2022. Thelytokous reproduction of onion thrips, Thrips tabaci Lindeman 1889, infesting welsh onion and genetic variation among their subpopulations. Insects 13, 78.
  8. Khan, F., Kim, K., Sung, J., Lim, H., Kim, S.G., Choi, M.Y., Kim, Y., 2023. A novel physiological function of pheromone biosynthesis-activating neuropeptide in production of aggregation pheromone. Sci. Rep. 13, 5551.
  9. Kim, J.H., Byeon, Y.W., Choi, M.Y., Ji, C.W., Heo, S.Y., Park, E.M., Kang, E.J., 2012. Control efficacy of natural enemies on four arthropod pests found in greenhouse hot pepper. Korean J. Appl. Entomol. 51, 83-90. https://doi.org/10.5656/KSAE.2012.02.1.73
  10. Kim, C., Choi, D., Kang, J., Ahmed, S., Kil, E., Kwon, G., Lee, G., Kim, Y., 2021. Thrips infesting hot pepper cultured in greenhouses and variation in gene sequences encoded in TSWV. Korean. J. Appl. Entomol. 60, 387-401.
  11. Kim, C., Choi, D., Lee, D., Khan, F., Kwon, G., Ham, E., Park, J., Kil, E.J., Kim, Y., 2022. Yearly occurrence of thrips infesting hot pepper in greenhouses and differential damages of dominant thrips. Korean J. Appl. Entomol. 61, 319-330.
  12. Kim, C., Abdisa, E., Esmaeily, M., Khan, F., Lee, D., Kim, Y., 2023a. Detection of the TSWV-infected onion thrips, Thrips tabaci, and the viral multiplication in the insect vector. Korean J. Pestic. Sci. 27, 135-144. https://doi.org/10.7585/kjps.2023.27.2.135
  13. Kim, C., Khan, F., Kim, Y., 2023b. A push-pull strategy to control the western flower thrips, Frankliniella occidentalis, using alarm and aggregation pheromones. PLoS ONE 18, e0279646.
  14. Korean Statistical Information Service (KOSIS), 2020. Area of cultivation of outdoor vegetables. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0013&vw_cd=MT_ZTITLE&list_id=K1_15&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE. (accessed on 13 November, 2023).
  15. Krueger, S., Subramanian, S., Niassy, S., Moritz, G.B., 2015. Sternal gland structures in males of bean flower thrips, Megalurothrips sjostedti, and Poinsettia thrips, Echinothrips americanus, in comparison with those of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Arthropod Struct. Dev. 44, 455-467. https://doi.org/10.1016/j.asd.2015.07.002
  16. Li, X., Geng, S., Zhang, Z., Zhang, J., Li, W., Huang, J., Lin, W., Bei, Y., Lu, Y., 2019. Species-specific aggregation pheromones contribute to coexistence in two closely related thrips species. Bull. Entomol. Res. 109, 119-126. https://doi.org/10.1017/S0007485318000366
  17. Liu, P., Qin, Z., Feng, M., Zhang, L., Huang, X., Shi, W., 2020. The male-produced aggregation pheromone of the bean flower thrips Megalurothrips usitatus in China: identification and attraction of conspecifics in the laboratory and field. Pest Manag. Sci. 76, 2986-2993. https://doi.org/10.1002/ps.5844
  18. Liu, Y., Chen, J., Xie, D., Song, B., Hu, D., 2021. First report on anti-TSWV activities of quinazolinone derivatives containing a dithioacetal moiety. J. Agric. Food Chem. 69, 12135-12142. https://doi.org/10.1021/acs.jafc.1c03171
  19. Niassy, S., Tamiru, A., Hamilton, J.G.C., Kirk, W.D.J., Mumm, R., Sims, C., de Kogel, W.J., Ekesi, S., Maniania, N.K., Bandi, K., Mitchell, F., Subramanian, S., 2019. Characterization of male-produced aggregation pheromone of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). J. Chem. Ecol. 45, 348-355. https://doi.org/10.1007/s10886-019-01054-8
  20. Reitz, S.R., Gao. Y., Kirk, W.D.J., Hoddle, M.S., Leiss, K.A., Funderburk, J.E., 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65, 17-37. https://doi.org/10.1146/annurev-ento-011019-024947
  21. Rotenberg, D., Jacobson, A.L., Schneweis, D.J., Whitfield, A.E., 2015. Thrips transmission of tospoviruses. Curr. Opin. Virol. 15, 80-89. https://doi.org/10.1016/j.coviro.2015.08.003
  22. Sampson, C., Kirk, W.D., 2013. Can mass trapping reduce thrips damage and is it economically viable? Management of the Western flower thrips in strawberry. PLoS ONE 8, e80787.
  23. SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  24. Seo, J., Yi, Y., Kim, B., Hwang, J.M., Choi, S.W., 2011. Disease occurrence on red-pepper plants surveyed in Northern Kyungbuk province, 2007-2008. Res. Plant Dis. 17, 205-210. https://doi.org/10.5423/RPD.2011.17.2.205
  25. Seo, M.H., Lee, S.C., Yang, C.Y., Yoon, J.B., Park, J., 2018. Monitoring occurrence status of thrips populations on field-cultivated pepper at major cultivated region in west coast, Korea. Korean J. Environ. Biol. 36, 544-549. https://doi.org/10.11626/KJEB.2018.36.4.544
  26. Takabayashi, J., Dicke, M., 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64, 187-193. https://doi.org/10.1111/j.1570-7458.1992.tb01608.x
  27. Teulon, D.A.J., Davidson, M.M., Hedderley, D., James, D.E., Fletcher, C.D., Larsen, L., Green, V.C., Perry, N.B., 2007. 4-Pyridyl carbonyl and related compounds as thrips lures: effectiveness for onion thrips and New Zealand flower thrips in field experiments. J. Agric. Food Chem. 55, 6198-6205. https://doi.org/10.1021/jf070389a
  28. Teulon, D.A.J., Davidson, M.M., Perry, N.B., Nielsen, M.C., Castane, C., Bosch, D., Riudavets, J., van Tol, R.W.H.M., de Kogelet, W.J., 2017. Methyl isonicotinate - a non-pheromone thrips semiochemical - and its potential for pest management. Int. J. Trop. Insect Sci. 37, 50-56. https://doi.org/10.1017/S1742758417000030