DOI QR코드

DOI QR Code

SOME RESULTS RELATED TO NON-DEGENERATE LINEAR TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS

  • K. Saravanan (Department of Mathematics, PSG College of Technology) ;
  • V. Piramanantham (Department of Mathematics, Bharathidasan University) ;
  • R. Theivaraman (Department of Mathematics, Bharathidasan University)
  • Received : 2023.03.20
  • Accepted : 2023.10.11
  • Published : 2023.12.30

Abstract

This article deals with non-degenerate linear transformations on Euclidean Jordan algebras. First, we study non-degenerate for cone invariant, copositive, Lyapunov-like, and relaxation transformations. Further, we study that the non-degenerate is invariant under principal pivotal transformations and algebraic automorphisms.

Keywords

Acknowledgement

All the authors thank the anonymous referee(s) and editorial members of the paper for their valuable recommendations. Once again, all the authors express their gratitude to the chief editor for giving us the opportunity to reset the manuscript in a nice way.

References

  1. Cottle, R. W., Pang, J. S., Stone, R. E., The linear complementarity problem, Academic Press, Boston (1992).
  2. Facchinei, F., Pang, J. S., Finite dimensional variational inequalities and complementarity problems, Springer, New York (2003).
  3. Gowda, M. S., Sznajder, R., Tao, J., Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl. 393 (2004), 203-232. https://doi.org/10.1016/j.laa.2004.03.028
  4. Faraut, J., Koranyi, A., Analysis on symmetric cones, Oxford University Press, Oxford(1994).
  5. Gowda, M. S., Sznajder, R., Automorphism invariance of P-and GUS-properties of linear transformations on Euclidean Jordan algebras, Math. Oper. Res. 31 (2006), 109-123. https://doi.org/10.1287/moor.1050.0182
  6. Tao, J., Strict semimonotonicity property of linear transformations on Euclidean Jordan algebras, J. Optim. Theory Appl. 144 (2010), 575-596. https://doi.org/10.1007/s10957-009-9611-7
  7. Murty, K. G., On the number of solutions to the complementarity problem and spanning properties of complementary cones, Linear Algebra Appl. 5 (1972), 65-108. https://doi.org/10.1016/0024-3795(72)90019-5
  8. Gowda, M. S., Song, Y., Some new results for semidefinite linear complementarity problems, SIAM J. Matrix Anal. Appl. 24 (2002), 25-39. https://doi.org/10.1137/S0895479800377927
  9. Gowda, M. S., Sznajder, R., Some global uniquness and solvability results for linear complementarity problem over symmetric cones, SIAM J. Optim. 18 (2007), 461-481. https://doi.org/10.1137/06065943X
  10. Alizadeh, F., Goldfarb, D., Second order cone programming, Math. Program., Ser. B 95 (2003), 3-51. https://doi.org/10.1007/s10107-002-0339-5
  11. Gowda, M. S., Tao, J., Z-transformations on proper and symmetric cones, Math. Program., Ser. B 117 (2009), 195-221. https://doi.org/10.1007/s10107-007-0159-8
  12. Tao,J. Gowda, M. S., Some P-properties for nonlinear transformations on Euclidean Jordan algebras, Mathematics of Operations Research 30 (2005), 985-1004. https://doi.org/10.1287/moor.1050.0157
  13. Tao, J., Jeyaraman, I., Ravindran, G., More results on column sufficiency property in Euclidean Jordan algebras, Annals of operation research 243 (2016), 229-243. https://doi.org/10.1007/s10479-013-1459-4