DOI QR코드

DOI QR Code

DIRECT PRODUCT, SUBDIRECT PRODUCT, AND REPRESENTABILITY IN AUTOMETRIZED ALGEBRAS

  • Received : 2023.06.29
  • Accepted : 2023.10.18
  • Published : 2023.12.30

Abstract

The paper introduces the concept of direct product and discusses some basic facts about distant ideals. We also introduce the definition of directly indecomposable in an autometrized algebra. Furthermore, we present the concept of a subdirect product and simple autometrized algebra and its behavior. We also introduce the definition of subdirectly irreducible in an autometrized algebras. In particular, we prove that every subdirectly irreducible monoid autometrized algebra is directly indecomposable. Finally, we discuss different properties of chain autometrized algebras and introduce the representability in the autometrized algebra. We also prove that if a weak chain monoid normal autometrized l-algebra is nilradical, then it is representable.

Keywords

References

  1. K. N. Swamy, A general theory of autometrized algebras, Math. Ann. 157 (1) (1964), 65-74. https://doi.org/10.1007/BF01362667
  2. L. M. Blumenthal, Boolean geometry. 1, Bull. New. Ser. Am. Math. Soc. 58 (4) (1952), 501-501.
  3. D. Ellis, Autometrized boolean algebras i: Fundamental distance-theoretic properties of b, Can. J. Math. 3 (1951), 87-93. https://doi.org/10.4153/CJM-1951-011-x
  4. E. Nordhaus and L. Lapidus, Brouwerian geometry, Can. J. Math. 6 (1954), 217-229. https://doi.org/10.4153/CJM-1954-023-7
  5. K. R. Roy, Newmannian geometry i, Bull. Calcutta Math. Soc. 52 (1960), 187-194.
  6. K. Narasimha Swamy, Autometrized lattice ordered groups i, Math. Ann. 154 (5) (1964), 406-412. https://doi.org/10.1007/BF01375523
  7. K. Swamy and N. P. Rao, Ideals in autometrized algebras, J. Aust. Math. Soc. 24 (3) (1977), 362-374. https://doi.org/10.1017/S1446788700020383
  8. J. Rachunek, Prime ideals in autometrized algebras, Czechoslov. Math. J. 37 (1) (1987), 65-69. https://doi.org/10.21136/CMJ.1987.102135
  9. J. Rachunek, Polars in autometrized algebras, Czechoslov. Math. J. 39 (4) (1989), 681-685. https://doi.org/10.21136/CMJ.1989.102344
  10. J. Rachunek, Regular ideals in autometrized algebras, Math. Slovaca. 40 (2) (1990), 117-122.
  11. J. Rachunek, Spectra of autometrized lattice algebras, Math. Bohem. 123 (1) (1998), 87-94. https://doi.org/10.21136/MB.1998.126293
  12. M. E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslov. Math. J. 44 (1) (1994), 81-90. https://doi.org/10.21136/CMJ.1994.128442
  13. T. Kovar, Normal autometrized lattice ordered algebras, Math. Slovaca. 50 (4) (2000), 369-376.
  14. I. Chajda and J. Rachunek, Annihilators in normal autometrized algebras, Czechoslov. Math. J. 51 (1) (2001), 111-120. https://doi.org/10.1023/A:1013757805727
  15. B. Subba Rao and P. Yedlapalli, Metric spaces with distances in representable autometrized algebras, Southeast Asian Bull. Math. 42 (3) (2018), 453-462.
  16. B. Rao, A. Kanakam, and P. Yedlapalli, A note on representable autometrized algebras, Thai J. Math. 17 (1) (2019), 277-281.
  17. B. Rao, A. Kanakam, and P. Yedlapalli, Representable autometrized semialgebra, Thai J. Math. 19 (4) (2021), 1267-1272.
  18. B. Rao, A. Kanakam, and P. Yedlapalli, Representable autometrized algebra and mv algebra, Thai J. Math. 20 (2) (2022), 937-943.
  19. G. Y. Tilahun, R. K. Parimi, and M. H. Melesse, Structure of an autometrized algebra, Research in Mathematics. 10 (1) (2023), 2192856.
  20. G. Y. Tilahun, R. K. Parimi, and M. H. Melesse, Equivalent conditions of normal autometrized l-algebra, Research in Mathematics. 10 (1) (2023), 2215037.