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DIRECT PRODUCT, SUBDIRECT PRODUCT, AND

REPRESENTABILITY IN AUTOMETRIZED ALGEBRAS

Gebrie Yeshiwas Tilahun ∗, Radhakrishna Kishore Parimi,
and Mulugeta Habte Melesse

Abstract. The paper introduces the concept of direct product and discusses some
basic facts about distant ideals. We also introduce the definition of directly inde-
composable in an autometrized algebra. Furthermore, we present the concept of
a subdirect product and simple autometrized algebra and its behavior. We also
introduce the definition of subdirectly irreducible in an autometrized algebras. In
particular, we prove that every subdirectly irreducible monoid autometrized alge-
bra is directly indecomposable. Finally, we discuss different properties of chain
autometrized algebras and introduce the representability in the autometrized alge-
bra. We also prove that if a weak chain monoid normal autometrized l-algebra is
nilradical, then it is representable.

1. Introduction

Swamy in [1] proposed the concept of autometrized algebra to create a com-
prehensive theory that encompasses the known autometrized algebras at the time:
Boolean algebras (Blumenthal [2] and Ellis [3]), Brouwerian algebras (Nordhaus and
Lapidus [4]), Newman algebras (Kamala Ranjan [5]), autometrized lattices (Nordhaus
and Lapidus [4]) and commutative lattice ordered groups or l-groups (Swamy [6]).
The theory of autometrized algebra was further developed by Swamy and Rao [7],
Rachunek [8–11], Hansen [12], Kovář [13], and Chajda and Rachŭnek [14].

Furthermore, the notion of representable autometrized algebras was examined by
Subba Rao and Yedlapalli in [15], as well as by Subba Rao, Kanakam, and Yedlapalli in
[16–18]. The theory of strong ideals and monoid autometrized algebras was developed
by Tilahun, Parimi, and Melesse in [19,20], who also explored the relationships among
normal autometrized semialgebras, normal autometrized l-algebras, and representable
autometrized algebras.

The main objective of this paper is to introduce and examine a direct product,
subdirect product, and representability in autometrized algebra. That can be viewed
as an extension of the work done by Tilahun, Parimi, and Melesse in [19]. Additionally,
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we investigate and describe the connections between subdirect products, chains, and
representability in autometrized algebras.

This paper shall be arranged in the following way. In Section 2, we recall some
definitions and terminologies that are essential. Section 3 introduces the concept of
direct product and discusses some basic facts about distant ideals in an autometrized
algebra. In Section 4, we present the definition of subdirect product and simple
autometrized algebras and their behavior. Section 5 discusses the different properties
of chain autometrized algebra and introduces the representability in autometrized
algebra. Lastly, in Section 6, we will provide a conclusion to the paper.

2. Preliminaries

This section reviews some basic concepts, definitions, and terms.

Definition 2.1 ([1]). A system A= (A, +, 0, ≤, ∗) is called an autometrized
algebra if

(i): (A, +, 0) is a commutative monoid.
(ii): (A, ≤) is a partial ordered set, and ≤ is translation invariant, that is,
∀a, b, c ∈ A; a ≤ b⇒ a+ c ≤ b+ c.

(iii): ∗ : A × A → A is autometric on A, that is, ∗ satisfies metric operation
axioms:

(M1): ∀a, b ∈ A; a ∗ b ≥ 0 and, a ∗ b = 0⇔ a = b,
(M2): ∀a, b ∈ A; a ∗ b = b ∗ a,
(M3): ∀a, b, c ∈ A; a ∗ c ≤ a ∗ b+ b ∗ c.

Definition 2.2 ([7]). An autometrized algebra A = (A, +, 0, ≤, ∗) is called
normal if and only if

(i): a ≤ a ∗ 0 ∀a ∈ A.
(ii): (a+ c) ∗ (b+ d) ≤ (a ∗ b) + (c ∗ d) ∀a, b, c, d ∈ A.
(iii): (a ∗ c) ∗ (b ∗ d) ≤ (a ∗ b) + (c ∗ d) ∀a, b, c, d ∈ A.
(iv): For any a and b in A, a ≤ b⇒ ∃x ≥ 0 such that a+ x = b.

Definition 2.3 ([7]). Let A = (A, +, 0, ≤, ∗) be a system. Then A is said to
be a lattice ordered autometrized algebra (or) autometrized l-algebra if

(i): (A, +, 0) is a commutative semigroup with 0.
(ii): (A, ≤) is a lattice, and ≤ is translation invariant, that is, ∀a, b, c ∈ A;

a+ (b ∨ c) = (a+ b) ∨ (a+ c)
a+ (b ∧ c) = (a+ b) ∧ (a+ c)

(iii): ∗ : A × A → A is autometric on A, that is, ∗ satisfies metric operation
axioms: M1, M2 and M3.

Definition 2.4 ([7]). Let A be an autometrized algebra. Then A is said to be
semiregular if for any a ∈ A, a ≥ 0⇒ a ∗ 0 = a.

Definition 2.5 ([19]). A nonempty subset I of an autometrized algebra A =
(A, +, 0, ≤, ∗) is called an ideal if and only if

(i): a, b ∈ I imply a+ b ∈ I.
(ii): a ∈ I, b ∈ A and b ∗ 0 ≤ a ∗ 0 imply b ∈ I.
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Definition 2.6 ([19]). Let A be an autometrized algebra. Then radical of A is
the set Rad(A) =

⋂
{M |M is a maximal ideal of A}.

Definition 2.7 ([19]). Let A be an autometrized algebra. An ideal I of A is called
a strong ideal if

(i): a ∈ I ⇔ a ∗ I = I and
(ii): a ∗ I = b ∗ I ⇔ a ∗ b ∈ I for a, b ∈ A.

Definition 2.8 ([19]). Let A = (A, +, 0, ≤, ∗) and B = (B, +, 0, ≤, ∗)
be autometrized algebras. Let f : A → B be a map. Then f is said to be a
homomorphism from A to B if and only if

(i): f(a+ b) = f(a) + f(b)∀a, b ∈ A,
(ii): f(a ∗ b) = f(a) ∗ f(b)∀a, b ∈ A and
(iii): a ≤ b⇒ f(a) ≤ f(b)∀a, b ∈ A.

A homomorphism f : A→ B is called

(i): an epimorphism if and only if f is onto.
(ii): a monomorphism(embedding) if and only if f is one-to-one.
(iii): an isomorphism if and only if f is a bijection.

Definition 2.9 ([19]). Let A and B be autometrized algebras. Let f : A→ B be
a map. If a ≤ b⇔ f(a) ≤ f(b)∀a, b ∈ A, then f is said to be an order-embedding of
A into B. That is; f is both order-preserving and order-reversing.

Definition 2.10 ([19]). Let A = (A, +, 0, ≤, ∗) and B = (B, +, 0, ≤, ∗) be
autometrized algebras. Let f : A → B be a homomorphism. Then ker f = {x ∈
A| f(x) = 0} where 0 is the zero element of B.

Clearly, f is one-to-one if and only if ker f = {0}.

Theorem 2.11 ([19]). Let A, B be autometrized l-algebras. Let f : A → B be
an epimorphism and order-reversing. Let I be a prime ideal of A. Then, L = f(I) =
{f(a) ∈ B | a ∈ I} is a prime ideal of B.

Definition 2.12 ([19]). An autometrized algebra (A, +, 0, ≤, ∗) is called monoid
if and only if

(i): a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ A.[Associative]
(ii): a ∗ 0 = a ∀a ∈ A.[Identity]

Then we say that A is a monoid autometrized algebra.

Theorem 2.13 ([19]). Let A be a monoid autometrized algebra. Then every ideal
of A is strong.

Theorem 2.14 ([19]). Let A be an autometrized algebra. Let M is an ideal of A.
Let A/M = {a ∗M |a ∈ A}. For any a ∗M, b ∗M ∈ A/M , define the operations:

(a ∗M) + (b ∗M) = (a+ b) ∗M.

(a ∗M) ∗ (b ∗M) = (a ∗ b) ∗M.

a ∗M ≤ b ∗M ⇔ a ≤ b.

Then (A/M, +, ≤, ∗) is an autometrized algebra is called the quotient algebra of A
by ideal M .



448 G. Y. Tilahun, R. K. Parimi, and M. H. Melesse

Theorem 2.15 ([19]). Let A be autometrized algebra. Let M be a strong ideal of
A. Define a map φ : A → A/M by φ(a) = a ∗M . Then φ is an epimorphism and
kerφ = M .

Theorem 2.16 ([19]). [First Isomorphism Theorem] LetA be a monoid autometrized
algebra. Let B be an autometrized algebra. Let f : A → B be a homomorphism.
Then A/ ker f ∼= Imf .

In particular, if f is onto, then A/ ker f ∼= B.

3. Direct Products and Distant Ideals

This section introduces direct products and distant ideals in an autometrized alge-
bra. We also prove that a monoid autometrized algebra A is directly indecomposable
if and only if the only distant ideals on A are {0}, A. Now, we shall begin with the
definition of direct product.

Definition 3.1. Let {Ai}i∈I be a family of autometrized algebras. Let A =∏
i∈I Ai = {a = (a(1), a(2), . . .) | a(i) ∈ Ai}. Define for any a = (ai)i∈I , b = (bi)i∈I :

a+ b = (ai + bi)i∈I .

a ∗ b = (ai ∗ bi)i∈I .
a ≤ b⇔ ai ≤ bi∀i ∈ I.

Then A =
∏

i∈I Ai is an autometrized algebra under these operations. This is called
the direct product of {Ai}i∈I .

Theorem 3.2. Let {Ai}i∈I be a family of monoid autometrized algebras. Let
A = A1 × . . .× Ak. Then A is a monoid autometrized algebra.

Proof. To show that A is a monoid autometrized algebra. Let a, b, c ∈ A. That
is; a = (ai)i∈I , b = (bi)i∈I and c = (ci)i∈I .

(i): Consider,

(a ∗ b) ∗ c = [(ai)i∈I ∗ (bi)i∈I ] ∗ (ci)i∈I .

= (ai ∗ bi)i∈I ∗ (ci)i∈I .

= [(ai ∗ bi) ∗ ci]i∈I .
= [ai ∗ (bi ∗ ci)]i∈I .[Since Ai is associative]

= (ai)i∈I ∗ (bi ∗ ci)i∈I .
= (ai)i∈I ∗ [(bi)i∈I ∗ (ci)i∈I ].

= a ∗ (b ∗ c).
Hence, ∗ is associative.

(ii): Consider,

a ∗ 0 = (ai)i∈I ∗ (0i)i∈I .

= (ai ∗ 0i)i∈I .

= (ai)i∈I .[Since 0 is identity for ∗]
= a.
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Hence, 0 is the identity element for ∗. Therefore, A is monoid autometrized
algebra.

Definition 3.3. Let A be an autometrized algebra. Let {Ai}i∈I be a family of
autometrized algebras. We know that

∏
i∈I Ai = {a = (a(1), a(2), . . .) | a(i) ∈ Ai}

is an autometrized algebra.
Let αi : A → Ai be a map for i ∈ I. Define a map α : A →

∏
i∈I Ai by α(a) =

(α1(a), α2(a), . . .). That is α(a)(i) = αi(a) for i ∈ I.

Theorem 3.4. Let A be an autometrized algebra. Let {Ai}i∈I be a family of
autometrized algebras. If each αi : A → Ai is a homomorphism, then the map
α : A→

∏
i∈I Ai is also a homomorphism and kerα = ∩i∈I kerαi.

Proof. Suppose each αi : A → Ai is a homomorphism. To show that α : A →∏
i∈I Ai is a homomorphism. Let a1, a2 ∈ A. Now consider;

(i):

α(a1 + a2)(i) = αi(a1 + a2).

= αi(a1) + αi(a2).

= α(a1)(i) + α(a2)(i).

= (α(a1) + α(a2))(i).

Therefore, α(a1 + a2) = α(a1) + α(a2).
(ii):

α(a1 ∗ a2)(i) = αi(a1 ∗ a2).
= αi(a1) ∗ αi(a2).

= α(a1)(i) ∗ α(a2)(i).

= (α(a1) ∗ α(a2))(i).

Therefore, α(a1 ∗ a2) = α(a1) ∗ α(a2).
(iii): Suppose a ≤ b. Since αi are homomorphisms;

⇒ αi(a) ≤ αi(b).

⇒ α(a)(i) ≤ α(b)(i).

⇒ α(a) ≤ α(b).

Hence, α is a homomorphism.
Now, we shall prove that kerα = ∩i∈I kerαi.

kerα = {a ∈ A | α(a) = 0}.
= {a ∈ A | α(a)(i) = 0(i)}.
= {a ∈ A | αi(a) = 0i}.
= {a ∈ A | a ∈ kerαi∀i ∈ I}.
= {a ∈ A | a ∈ ∩i∈I kerαi}.
= ∩i∈I kerαi.
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Definition 3.5. Let {Ai}i∈I and {Bi}i∈I be families of autometrized algebras.
Let αi : Ai → Bi be a map for i ∈ I. Define a map α :

∏
i∈I Ai →

∏
i∈I Bi. For

any a = (a(1), a(2), . . .) ∈
∏

i∈I Ai; α(a) = (α1(a(1)), α2(a(2)), . . .). That is
α(a)(i) = αi(a(i)); for i ∈ I.

Theorem 3.6. Let {Ai}i∈I and {Bi}i∈I be families of autometrized algebras. If
each αi : Ai → Bi is a homomorphism, then the map α : A =

∏
i∈I Ai →

∏
i∈I Bi is

also a homomorphism.

Proof. Suppose αi : Ai → Bi is a homomorphism ∀i ∈ I. To show that α : A =∏
i∈I Ai →

∏
i∈I Bi is a homomorphism. Let a, b ∈ A. That is, a = (a(1), a(2), . . .)

and b = (b(1), b(2), . . .). Now consider;

(i):

α(a+ b)(i) = αi((a+ b)(i)).

= αi(a(i) + b(i)).

= αi(a(i)) + αi(b(i)).[Since αi is a homomorphism]

= α(a)(i) + α(b)(i).

= (α(a) + α(b))(i).

Therefore, α(a+ b) = α(a) + α(b).
(ii):

α(a ∗ b)(i) = αi((a ∗ b)(i)).
= αi(a(i) ∗ b(i)).
= αi(a(i)) ∗ αi(b(i)).[Since αi is a homomorphism]

= α(a)(i) ∗ α(b)(i).

= (α(a) ∗ α(b))(i).

Therefore, α(a ∗ b) = α(a) ∗ α(b).
(iii): Suppose a ≤ b. Therefore, a(i) ≤ b(i). Since αi are homomorphisms;

⇒ αi(a(i)) ≤ αi(b(i)).

⇒ α(a)(i) ≤ α(b)(i).

⇒ α(a) ≤ α(b).

Hence, α is a homomorphism.

Definition 3.7. Let A1, A2 be autometrized algebras. Define

π1 : A1 × A2 → A1 by π1(a(1), a(2)) = a(1) and

π2 : A1 × A2 → A2 by π2(a(1), a(2)) = a(2).

These two maps are called projection maps. It is clear that the projection maps π1, π2
are epimorphisms.

Definition 3.8. Let {Ai}i∈I be a family of autometrized algebras. Define

πj :
∏
i∈I

Ai → Aj by πj(a) = a(j).

This map is called a projection map. It is clear that the projection maps πj is an
epimorphism.
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Theorem 3.9. Let A1, . . . , Ak are autometrized algebras and let A = A1× . . .×
Ak. Let I (Ai) is the set of all ideals of Ai for i = 1, . . . , k. If Ii ∈ I (Ai), then
I = I1 × . . .× Ik is an ideal of A.

Conversely, if I = I1 × . . .× Ik is an ideal of A, then for i = 1, . . . , k, Ii = πi(I)
is an ideal of Ai.

Proof. Suppose that Ii ∈ I (Ai). To show that I = I1 × . . .× Ik is an ideal of A.

(i): Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ I. Then a + b = (a1, . . . , ak) +
(b1, . . . , bk) = (a1 + b1, . . . , ak + bk). Since ai + bi ∈ Ii for i = 1, . . . , k;
implies that (a1 + b1, . . . , ak + bk) ∈ I. Therefore, a+ b ∈ I.

(ii): Let a = (a1, . . . , ak) ∈ I and b = (b1, . . . , bk) ∈ A. Suppose b ∗ 0 ≤ a ∗ 0.
Therefore, (b1, . . . , bk) ∗ (01, . . . , 0k) ≤ (a1, . . . , ak) ∗ (01, . . . , 0k). By the
definition of product; (b1 ∗ 01, . . . , bk ∗ 0k) ≤ (a1 ∗ 01, . . . , ak ∗ 0k). This
implies that bi ∗ 0i ≤ ai ∗ 0i for i = 1, . . . , k. Since each Ii are ideals and
ai ∈ Ii for i = 1, . . . , k; implies that bi ∈ Ii for i = 1, . . . , k. Therefore,
b = (b1, . . . , bk) ∈ I for i = 1, . . . , k. Hence I is ideal.

Conversely, suppose that I = I1 × . . .× Ik is an ideal of A.
(i): Let ai, bi ∈ Ii. Since πi is on to; there exists a = (a1, . . . , ak), b =

(b1, . . . , bk) ∈ I such that: πi((a1, . . . , ak)) = ai and πi((b1, . . . , bk)) =
bi for i = 1, . . . , k. Therefore, πi(a+b) = πi((a1, . . . , ak))+πi((b1, . . . , bk)) =
ai + bi ∈ Ii for i = 1, . . . , k.

(ii): Let ai ∈ Ii and bi ∈ Ai for i = 1, . . . , k. Suppose bi ∗ 0i ≤ ai ∗ 0i for i =
1, . . . , k. Since πi is on to; there exists a = (a1, . . . , ak) ∈ I such that:
πi((a1, . . . , ak)) = ai. Therefore, by the definition of product (b1, . . . , bk) ∗
(01, . . . , 0k) ≤ (a1, . . . , ak)∗(01, . . . , 0k). Therefore; (b1, . . . , bk) ∈ I. Clearly,
bi ∈ Ii for i = 1, . . . , k. Hence Ii = πi(I) for i = 1, . . . , k is an ideal of Ai.

Remark 3.10. Let A1, . . . , Ak are monoid autometrized algebras and let A =
A1 × . . . × Ak. Let I (Ai) is the set of all ideals of Ai for i = 1, . . . , k. If
Ii ∈ I (Ai), then I = I1× . . .× Ik is a strong ideal of A. Indeed, the ideals of monoid
autometrized algebras are strong.

Corollary 3.11. Let A1, . . . , Ak are autometrized algebras and let A = A1 ×
. . . × Ak. Let I (A) be the set of all ideals of A. Then I (A) = I (A1) × . . . ×
I (Ak) for i = 1, . . . , k.

Proof. It follows from the above theorem (3.9).

Theorem 3.12. Let A be an autometrized algebra. Let {Ai}i∈I be a family of
autometrized algebras. Suppose αi : A→ Ai is a homomorphism for each i ∈ I. Then
α : A→

∏
i∈I Ai is an embedding if and only if ∩i∈I kerαi = {0}.

Proof. Suppose α is both homomorphism and one-to-one.
To show that ∩i∈I kerαi = {0}. It is clear that 0 ∈ ∩i∈I kerαi. Let x ∈ ∩i∈I kerαi.

This implies that x ∈ kerαi ∀i ∈ I. So, αi(x) = 0(i) ∀i ∈ I. Then by definition;
α(x)(i) = 0(i) ∀i ∈ I. Therefore, α(x) = 0. Since α is one-to-one; x = 0. Thus,
∩i∈I kerαi = {0}.

Conversely, suppose that ∩i∈I kerαi = {0}. To show that α is an embedding.
Since each αi is a homomorphism by theorem (3.4); α : A →

∏
i∈I Ai is also a
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homomorphism. Now, we shall show that α is one-to-one. Let a1, a2 ∈ A. Suppose
α(a1) = α(a2). Therefore,

α(a1)(i) = α(a2)(i).

αi(a1) = αi(a2).

αi(a1) ∗ αi(a2) = 0.

αi(a1 ∗ a2) = 0.

Therefore, a1 ∗ a2 ∈ kerαi ∀ i ∈ I. This implies a1 ∗ a2 ∈ ∩i∈I kerαi. So, a1 ∗ a2 = 0.
Clearly, a1 = a2. Therefore, α is one-to-one. Hence α is an embedding.

Let A1, A2 be monoid autometrized algebras. It is obvious that A1 × A2 is also a
monoid autometrized algebra.

Theorem 3.13. Let A1, A2 be monoid autometrized algebras. Then kerπ1, kerπ2
are distant ideals. That is; kerπ1 ∗ kerπ2 = A1 × A2 and kerπ1 ∩ kerπ2 = {0}.

Proof. Clearly, ker π1, kerπ2 are strong ideals. To show that ker π1, kerπ2 are
distant ideals.

(i): To show that kerπ1 ∗ kerπ2 = A1 × A2. Clearly, ker π1 ∗ kerπ2 ⊆ A1 × A2.
Conversely, let (x, y) ∈ A1 × A2. Therefore, x ∈ A1, y ∈ A2. We know that
(0, y) ∈ kerπ1 and (x, 0) ∈ kerπ2; hence (0, y) ∗ (x, 0) ∈ kerπ1 ∗ kerπ2. Since
A is monoid; (0 ∗ x, y ∗ 0) = (x, y). Therefore, (x, y) ∈ kerπ1 ∗ kerπ2. Whence
A1 × A2 ⊆ kerπ1 ∗ kerπ2. Thus, ker π1 ∗ kerπ2 = A1 × A2.

(ii): To show that ker π1 ∩ kerπ2 = {0}. Clearly, {0} ∈ kerπ1, kerπ2. Therefore,
{0} ∈ kerπ1 ∩ kerπ2. Conversely, let a = (a1, a2) ∈ kerπ1 ∩ kerπ2. So,
a ∈ kerπ1 and a ∈ kerπ2. This implies π1(a) = π1(a1, a2) = a1 = 0 and
π2(a) = π2(a1, a2) = a2 = 0. Therefore, a = (a1, a2) = (0, 0). Hence
kerπ1 ∩ kerπ2 = {0}.

Theorem 3.14. Let A be a monoid autometrized algebra. Let I, J be distant
ideals of A. Then A ∼= A/I × A/J .

Proof. Clearly, I, J and I ∩ J are strong ideals. Define a map f : A→ A/I ×A/J
by f(a) = (a ∗ I, a ∗J). To show that f is well-defined. Let a, b ∈ A. Suppose a = b.

⇒ a ∗ I = b ∗ I and a ∗ J = b ∗ J.
⇒ (a ∗ I, a ∗ J) = (b ∗ I, b ∗ J).

⇒ f(a) = f(b).

Hence, f is well-defined.
To show that f is a homomorphism. Let a, b ∈ A.

(i):

f(a+ b) = ((a+ b) ∗ I, (a+ b) ∗ J).

= ((a ∗ I) + (b ∗ I), (a ∗ J) + (b ∗ J)).

= (a ∗ I, a ∗ J) + (b ∗ I, b ∗ J).

= f(a) + f(b).
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(ii):

f(a ∗ b) = ((a ∗ b) ∗ I, (a ∗ b) ∗ J).

= ((a ∗ I) ∗ (b ∗ I), (a ∗ J) ∗ (b ∗ J)).

= (a ∗ I, a ∗ J) ∗ (b ∗ I, b ∗ J).

= f(a) ∗ f(b).

(iii): Suppose a ≤ b. Therefore, a ∗ I ≤ b ∗ I and a ∗ J ≤ b ∗ J . By the definition
of a direct product, (a ∗ I, a ∗ J) ≤ (b ∗ I, b ∗ J). This implies f(a) ≤ f(b).
Hence, f is a homomorphism.

To show that f is onto map.
Let (x ∗ I, y ∗ J) ∈ A/I × A/J . Therefore, x, y ∈ A = I ∗ J . Then there exists

a1, a2 ∈ I and b1, b2 ∈ J such that x = a1 ∗ b1, y = a2 ∗ b2. Then

(b1 ∗ a2) ∗ I = (b1 ∗ I) ∗ (a2 ∗ I) = (b1 ∗ I) ∗ I.
= (b1 ∗ I) ∗ (0 ∗ I).

= (b1 ∗ 0) ∗ I = b1 ∗ I.(1)

Also,

(a1 ∗ b1) ∗ I = (a1 ∗ I) ∗ (b1 ∗ I) = I ∗ (b1 ∗ I).

= (0 ∗ I) ∗ (b1 ∗ I).

= (0 ∗ b1) ∗ I = b1 ∗ I.(2)

From equations (1) and (2); (b1 ∗ a2) ∗ I = b1 ∗ I = (a1 ∗ b1) ∗ I = x ∗ I. Similarly,
(b1 ∗ a2) ∗ J = a2 ∗ J = (b2 ∗ a2) ∗ J = y ∗ J .

So, f(b1 ∗ a2) = ((b1 ∗ a2) ∗ I, (b1 ∗ a2) ∗ J) = (x ∗ I, y ∗ J). Hence, f is onto.
Now, we shall show that ker f = I ∩ J .

ker f = {a ∈ A|f(a) = (I, J)}.
= {a ∈ A|(a ∗ I, a ∗ J) = (I, J)}.
= {a ∈ A|a ∗ I = I and a ∗ J = J}.
= {a ∈ A|a ∈ I and a ∈ J}.
= I ∩ J.

Thus, A/I ∩ J ∼= A/I × A/J by the first isomorphism theorem. Since I ∩ J = {0},
A/{0} ∼= A/I × A/J . Hence A ∼= A/I × A/J .

Definition 3.15. Let A be an autometrized algebra. A is said to be directly inde-
composable if A is not isomorphic to a direct product of two non-trivial autometrized
algebras.

Theorem 3.16. Let A be a monoid autometrized algebra. Then A is directly
indecomposable if and only if the only distant ideals on A are {0}, A.

Proof. Suppose A is directly indecomposable. To show that the only distant ideals
on A are {0}, A.

Suppose I, J are distant ideals on A. By theorem (3.14); A ∼= A/I × A/J . Since
A is directly indecomposable, either A/I or A/J is trivial. Therefore, |A/I| = 1 or
|A/J | = 1. This implies that either I = A or J = A. If I = A, then J = {0}. Since
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I, J are distant ideals on A. If J = A, then I = {0}. Hence the only distant ideals
on A are {0}, A.

Conversely, suppose the only distant ideals on A are {0}, A. To show that A
is directly indecomposable. Suppose A ∼= A1 × A2. Consider π1 : A → A1 and
π2 : A → A2 are homomorphisms. Therefore, ker π1, kerπ2 are distant ideals on A;
either kerπ1 or kerπ2 = {0}. If ker π1 = {0}, then π1 is one to one. Therefore, π1
is an isomorphism. Which implies that A ∼= A1. Hence |A2| = 1. If ker π2 = {0},
then π2 is one to one. Therefore, π2 is an isomorphism. Which implies that A ∼= A2.
Hence |A1| = 1.

4. Subdirect Products and Simple

This section presents the concept of a subdirect product and simple autometrized
algebra and its behavior. We also prove that every subdirectly irreducible monoid
autometrized algebra is directly indecomposable. In particular, we show that every
monoid autometrized algebra is isomorphic to the subdirect product of subdirectly
irreducible autometrized algebras(homomorphic images of the given algebra).

Definition 4.1. Let A be an autometrized algebra. Let {Ai}i∈I be a family of
autometrized algebras. A map α : A →

∏
i∈I Ai is said to be a subdirect embedding

if α is an embedding and πi ◦ α : A→ Ai is an epimorphism.

Definition 4.2. An autometrized algebra A is said to be a subdirect product of a
family of autometrized algebras {Ai}i∈I , if α : A→

∏
i∈I Ai is subdirect embedding.

Definition 4.3. An autometrized algebra A is said to be subdirectly irreducible,
if A is a subdirect product of {Ai}i∈I implies A ∼= Ai for some i ∈ I.

Theorem 4.4. Every subdirectly irreducible monoid autometrized algebra is di-
rectly indecomposable.

Proof. Let A be subdirectly irreducible monoid autometrized algebra. To show
that A is directly indecomposable. To show that the only distant ideals on A are
{0}, A.

Let I, J are distant ideals on A. Clearly, I, J are strong ideals. By theorem
(3.14); A ∼= A/I × A/J where α : A → A/I × A/J by α(a) = (a ∗ I, a ∗ J) is
an isomorphism. Therefore, α : A → A/I × A/J is an embedding, and α(A) is
subalgebra of A/I × A/J . Consider πI ◦ α : A → A/I and πJ ◦ α : A → A/J .
Since πI ◦ α(a) = πI(α(a)) = πI(a ∗ I, a ∗ J) = a ∗ I. Therefore, πI ◦ α is an onto
map. Similarly, πJ ◦ α is an onto map. Whence, α : A → A/I × A/J is subdirectly
embedding. Since A is subdirectly irreducible; either πI◦α or πJ ◦α is an isomorphism.
That is, either A ∼= A/I or A ∼= A/J . Therefore, either I = A or J = A. If I = A,
then J = {0}. Since I, J are distant ideals on A. If J = A, then I = {0}. Hence the
only distant ideals on A are {0}, A. By theorem (3.16); A is directly indecomposable.

Theorem 4.5. Let A be an autometrized algebra. Let {Ii}i∈I ⊆ I (A) where
each Ii is strong ideal. Suppose ∩i∈IIi = {0}. Then the map α : A →

∏
i∈I A/Ii by

α(a)(i) = αi(a) = a ∗ Ii is subdirectly embedding. Where αi : A→ A/Ii.
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Proof. By theorem (2.15); αi : A→ A/Ii by αi(a) = a∗Ii is epimorphism ∀i ∈ I and
kerαi = Ii ∀i ∈ I. By theorem (3.4); α : A →

∏
i∈I A/Ii by α(a)(i) = αi(a) = a ∗ Ii

is also a homomorphism and ∩i∈I kerαi = ∩i∈IIi = {0}. By theorem (3.12); α is
one-to-one. Therefore, α is an embedding. Clearly, α(A) is subalgebra of

∏
i∈I A/Ii.

Consider πi ◦ α : A → A/Ii. Then, πi ◦ α(a) = πi(α(a)) = α(a)(i) = a ∗ Ii.
Therefore, πi ◦ α = αi. This implies πi ◦ α is onto ∀i ∈ I. Hence α is a subdirectly
embedding.

Theorem 4.6. Let A be a non-trivial monoid autometrized algebra, that is; |A| >
1. Let I (A) be the set of all ideals of A. Then A is subdirectly irreducible if and
only if the intersection of all nonzero ideals is a nonzero ideal (or I (A) \ {0} has a
minimal element).

Proof. Suppose A is subdirectly irreducible. Let J = I (A) \ {0}. To show that
the intersection of all nonzero ideals is a nonzero ideal. Let Ii ∈ J . To show that
∩Ii∈JIi ∈ J . Assume that ∩Ii∈JIi /∈ J . We know that ∩Ii∈JIi ∈ I (A). Therefore,
∩Ii∈JIi = {0}. By theorem (4.5); α : A →

∏
Ii∈J A/Ii is subdirectly embedding.

Since A is subdirectly irreducible; there exists Ii ∈ J such that πi ◦α : A→ A/Ii is an
isomorphism. Therefore, A ∼= A/Ii. Clearly, Ii = {0}. This is a contradiction. Thus,
∩Ii∈JIi ∈ J .

Conversely, suppose that the intersection of all nonzero ideals is a nonzero ideal.
Let Ii ∈ J . Therefore, ∩Ii∈JIi 6= {0} and ∩Ii∈JIi ∈ I (A). Since |A| > 1; there exists
a ∈ A and a 6= 0 such that a ∈ ∩Ii∈JIi. To show that A is subdirectly irreducible.
Suppose α : A→

∏
i∈I Ai is subdirectly embedding. Therefore, α is one-to-one. Since

a 6= 0; α(a) 6= α(0). Then there exists i ∈ I such that α(a)(i) 6= α(0)(i). Consider
πi ◦ α : A → Ai. Then, πi ◦ α(a) 6= πi ◦ α(0). Therefore, (πi ◦ α(a)) ∗ (πi ◦ α(0)) =
πi ◦ α(a ∗ 0) 6= 0.

a ∗ 0 /∈ kerπi ◦ α.(3)

If ker πi ◦ α ∈ J = I (A) \ {0}, then ∩Ii∈JIi ⊆ kerπi ◦ α. Therefore, a ∈ kerπi ◦ α.
Clearly, a∗0 ∈ kerπi◦α. This is a contradiction by (3). As a result, kerπi◦α /∈ J . So,
kerπi ◦α = {0}, and πi ◦α is one to one. Therefore, πi ◦α : A→ Ai is an isomorphism
and imply A ∼= Ai for some i ∈ I. Hence A is subdirectly irreducible.

Theorem 4.7. Let A be a monoid autometrized algebra. Then A is isomorphic to
the subdirect product of subdirectly irreducible autometrized algebras(homomorphic
images of given algebra).

Proof. If |A| = 1, that is; A is trivial, then the theorem is true. Suppose |A| > 1.
Then, there exists a ∈ A such that a 6= 0.

Let H = {I ∈ I (A)|a /∈ I}. So, {0} ∈ H and H 6= ∅. Therefore, (H, ⊆) is
non-empty poset.

Let {Ii}i∈I ⊆ H be a chain in H. Let Ψ = ∪i∈IIi =
∨

i∈I Ii be a chain in H. Then,
Ψ ∈ I (A) and Ii ⊆ Ψ ∀i ∈ I. Since a /∈ Ii ∀i ∈ I; implies that a /∈

∨
i∈I Ii = Ψ ∈ H.

Therefore, Ψ is an upper bound of {Ii}i∈I in H. Hence every chain in H has an upper
bound in H. By Zorn’s lemma, H has a maximal element. Say Ia. That is; Ia ∈ H
is maximal in H. Therefore, Ia ∈ I (A) is maximal with respect to not containing a.
That is; a /∈ Ia.
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To show that I(a)∨Ia is minimal element of [Ia, A]\{Ia}. Clearly, Ia ⊆ I(a)∨Ia ⊆
I (A).

If Ia = I(a) ∨ Ia, then I(a) ⊆ Ia. Therefore, a ∈ Ia. This is contradiction. Since
a /∈ Ia. Therefore, Ia 6= I(a) ∨ Ia. Whence, I(a) ∨ Ia ∈ [Ia, A] \ {Ia}.

Let J ∈ [Ia, A] \ {Ia}. Therefore, Ia ⊆ J ⊆ A. Clearly, I(a) ∨ Ia ⊆ I(a) ∨ J .
If a /∈ J , then J ∈ H. We know that Ia is maximal in H and Ia ⊆ J . This

is a contradiction. Therefore, a ∈ J and implies I(a) ⊆ J . Clearly, I(a) ∨ Ia ⊆
J . Therefore, I(a) ∨ Ia is minimal element of [Ia, A] \ {Ia}. By correspondence
theorem we have; [Ia, A] ∼= I (A/Ia). Therefore, I(a) ∨ Ia is minimal element of
I (A/Ia) \ {Ia}. That is; I (A/Ia) \ {Ia} has minimal element. By theorem (4.6);
A/Ia is subdirectly irreducible. We know that A/Ia is a homomorphic image of
A. Therefore, {A/Ia}a∈A; a6=0 is a collection of subdirectly irreducible autometrized
algebras.

Now, to show that ∩{Ia|a ∈ A and a 6= 0} = {0}.
Clearly, {0} ⊆ ∩Ia. Let a ∈ ∩Ia. If a 6= 0, then a ∈ Ia. This is a contradiction.

Therefore, a = 0.
By theorem (4.5); α : A →

∏
a∈A; a6=0A/Ia is subdirectly embedding. Hence A ∼=

α(A) and α(A) is a subdirect product of {A/Ia}a∈A; a6=0.

Definition 4.8. Let A be an autometrized algebra. A is said to be simple if I (A)
contains exactly two elements {0}, A. That is I (A) = {{0}, A}.

Definition 4.9. Let A be an autometrized algebra. Then, A is nilradical if and
only if Rad(A) = {0}.

Remark 4.10. Let A be an autometrized algebra. If A is simple, then A is nilrad-
ical.

Example 4.11. Let A = {0, a, b, c} with 0 ≤ a, b ≤ c and elements a, b are
incomparable. Define ∗ and + by the following tables.

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

+ 0 a b c
0 0 a b c
a a a c c
b b c b c
c c c c c

Clearly, A is an autometrized algebra. Here I1 = {0, a} and I2 = {0, b} are
maximal ideals. And I1 ∩ I2 = {0}. Thus, A is nilradical but not simple.

Definition 4.12. Let A be an autometrized algebra. Let M ∈ I (A). Then M is
said to be a maximal ideal if [M, A] contains exactly two distinct elements. That is
[M, A] = {M, A}.

Theorem 4.13. Let A be an autometrized algebra. Let M be a strong ideal of A.
Then M is maximal if and only if A/M is simple.
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Proof. By correspondence theorem; we have [M, A] = IM(A) and I (A/M) are
in one-to-one correspondence. Therefore, |[M, A]| = |I (A/M)|. Since |[M, A]| = 2;
implies that |I (A/M)| = 2. Thus, the only ideals of A/M are {M} and A/M itself.
Hence A/M is simple.

Conversely, suppose A/M is simple. So, |I (A/M)| = 2. Therefore, |[M, A]| = 2.
Hence M is maximal.

5. Chain and Representability

This section discusses different properties of chain autometrized algebra and intro-
duces the representability in autometrized algebra. We also prove that if a weak chain
monoid normal autometrized l-algebra is nilradical, then it is representable.

Definition 5.1. Let {Ai}i∈I be a family of autometrized l-algebras. Let A =∏
i∈I Ai = {a = (a(1), a(2), . . .)|a(i) ∈ Ai}. Define for any a = (ai)i∈I , b = (bi)i∈I :

a+ b = (ai + bi)i∈I .

a ∧ b = (ai ∧ bi)i∈I .
a ∨ b = (ai ∨ bi)i∈I .
a ∗ b = (ai ∗ bi)i∈I .
a ≤ b⇔ ai ≤ bi∀i ∈ I.

Then A =
∏

i∈I Ai is an autometrized l-algebra under these operations. This is called
the direct product of {Ai}i∈I .

Definition 5.2. Let A be an autometrized l-algebra. If A satisfies either [a ∗ (a∨
b)] ∧ [b ∗ (a ∨ b)] = 0 or [a ∗ (a ∧ b)] ∧ [b ∗ (a ∧ b)] = 0 ∀a, b ∈ A, then A is said to be
a weak chain.

Theorem 5.3. Let A be a chain autometrized l-algebra. Then

(i): A is a weak chain.
(ii): [a ∗ (a ∨ b)] + [b ∗ (a ∨ b)] = [a ∗ (a ∨ b)] ∨ [b ∗ (a ∨ b)] = a ∗ b ∀a, b ∈ A.
(iii): If A is semiregular, then [a∗ (a∨ b)]∗ [b∗ (a∨ b)] = [a∗ (a∨ b)] + [b∗ (a∨ b)] =

[a ∗ (a ∨ b)] ∨ [b ∗ (a ∨ b)] = a ∗ b ∀a, b ∈ A.

Proof. Suppose A is a chain. Let a, b ∈ A. Then, either a ≤ b or b ≤ a. Suppose
a ≤ b.

(i): Since a∨b = b; implies that [a∗(a∨b)]∧ [b∗(a∨b)] = (a∗b)∧(b∗b) = (a∗b)∧0.
Since a ∗ b ≥ 0; and hence [a ∗ (a ∨ b)] ∧ [b ∗ (a ∨ b)] = 0. Similar for the case
b ≤ a.

(ii): Since a∨b = b; implies that [a∗(a∨b)]+[b∗(a∨b)] = (a∗b)+(b∗b) = (a∗b)+0 =
a ∗ b. Similarly, [a ∗ (a ∨ b)] ∨ [b ∗ (a ∨ b)] = (a ∗ b) ∨ (b ∗ b) = (a ∗ b) ∨ 0 = a ∗ b;
since a ∗ b ≥ 0. Similar for the case b ≤ a.

(iii): Suppose A is semiregular. Since a∨b = b; implies that [a∗(a∨b)]∗[b∗(a∨b)] =
(a ∗ b) ∗ (b ∗ b) = (a ∗ b) ∗ 0 = a ∗ b; since A is semiregular. Similar for the case
b ≤ a.

Theorem 5.4. Let A be a chain autometrized l-algebra. Then
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(i): A is a weak chain.
(ii): [a ∗ (a ∧ b)] + [b ∗ (a ∧ b)] = [a ∗ (a ∧ b)] ∧ [b ∗ (a ∧ b)] = a ∗ b ∀a, b ∈ A.
(iii): If A is semiregular, then [a∗ (a∧ b)]∗ [b∗ (a∧ b)] = [a∗ (a∧ b)] + [b∗ (a∧ b)] =

[a ∗ (a ∧ b)] ∧ [b ∗ (a ∧ b)] = a ∗ b ∀a, b ∈ A.

Proof. Similar to theorem (5.3).

Theorem 5.5. Let A be a weak chain autometrized l-algebra. Then, A is a chain
if and only if a ∧ b = 0⇒ either a = 0 or b = 0.

Proof. Suppose A is a chain. Let a, b ∈ A. Then, either a ≤ b or b ≤ a. Therefore,
either a ∧ b = a or b ∧ a = b. Suppose a ∧ b = 0. Hence, either a = 0 or b = 0.

Conversely, suppose a ∧ b = 0⇒ either a = 0 or b = 0. To show that A is a chain.
Let a, b ∈ A. Since A is a weak chain, we have either a ∗ (a∨ b) = 0 or b ∗ (a∨ b) = 0.
As a result, either a = a ∨ b or b = a ∨ b. Therefore, either b ≤ a or a ≤ b. Hence, A
is a chain.

Theorem 5.6. Let A be a weak chain normal autometrized l-algebra. Let M be a
strong ideal of A. Then the quotient algebra A/M is an autometrized l-algebra chain
if and only if M is prime.

Proof. Suppose A/M is a chain. Let a, b ∈ A. Suppose a ∧ b = 0. To show that
either a ∈ M or b ∈ M . Since M is an ideal, a ∧ b = 0 ∈ M . Since M is a strong
ideal, implies that (a ∧ b) ∗ M = M , and it follows that (a ∗ M) ∧ (b ∗ M) = M .
Since A/M is a chain, either a ∗M ≤ b ∗M or b ∗M ≤ a ∗M . That implies that
(a ∗M) ∧ (b ∗M) = a ∗M or (a ∗M) ∧ (b ∗M) = b ∗M . Therefore, a ∗M = M or
b ∗M = M . As a result, either a ∈M or b ∈M . Hence M is prime.

Conversely, suppose M is prime. To show that A/M is a chain. Let a∗M, b∗M ∈
A/M where a, b ∈ A. Since A is a weak chain, we have [a ∗ (a∨ b)]∧ [b ∗ (a∨ b)] = 0.
Since M is prime; either a ∗ (a ∨ b) ∈M or b ∗ (a ∨ b) ∈M . Therefore,

[a ∗ (a ∨ b)] ∗M = M or [b ∗ (a ∨ b)] ∗M = M.

⇒ (a ∗M) ∗ [(a ∨ b) ∗M ] = M or (b ∗M) ∗ [(a ∨ b) ∗M ] = M.

⇒ a ∗M = (a ∨ b) ∗M or b ∗M = (a ∨ b) ∗M.

⇒ a ∗M = (a ∗M) ∨ (b ∗M) or b ∗M = (a ∗M) ∨ (b ∗M).

As a result b ∗M ≤ a ∗M or a ∗M ≤ b ∗M . Hence A/M is a chain.

Theorem 5.7. Let A be a weak chain normal autometrized l-algebra. If P is a
prime strong ideal, then {I ∈ I (A)|P ⊆ I} is chain under inclusion.

Proof. Suppose that J and K are incomparable ideals containing P . That is, P ⊆ J
and P ⊆ K such that J * K and K * J . Therefore there exists a ∈ J such that
a /∈ K and there exists b ∈ K such that b /∈ J . Clearly, a ∗ 0 ∈ J and b ∗ 0 ∈ K.

Now consider (a∗0)∗P and (b∗0)∗P . Since A/P is chain; either (a∗0)∗P ≤ (b∗0)∗P
or (b ∗ 0) ∗ P ≤ (a ∗ 0) ∗ P . Which implies that a ∗ 0 ≤ b ∗ 0 or b ∗ 0 ≤ a ∗ 0. Since
a ∈ J and b ∈ K, implies that b ∈ J and a ∈ K. This is a contradiction. Hence
{I ∈ I (A)|P ⊆ I} is chain under inclusion.
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Theorem 5.8. Let A be a weak chain monoid normal autometrized l-algebra. Let
α : A→ B be a homomorphism. Then ker(α) is a prime ideal if and only if Im(α) is
a chain autometrized l-algebra.

Proof. We know that by the fundamental theorem of homomorphism, A/ ker(α) ∼=
Im(α). Clearly, ker(α) is a strong ideal. If ker(α) is prime, then by theorem (5.6)
A/ ker(α) is a chain autometrized l-algebra. Hence Im(α) is a chain autometrized
l-algebra.

Conversely, suppose Im(α) is a chain autometrized l-algebra. Therefore, A/ ker(α)
is a chain autometrized l-algebra. Thus, again by theorem (5.6) ker(α) is prime
ideal.

Definition 5.9. Let A be an autometrized algebra. We say that A is representable
if it can be represented as a subdirect product of chain autometrized algebras.

Theorem 5.10. Let A be a weak chain monoid normal autometrized l-algebra.
Then, there is a family {Pi}i∈I of prime ideals of A with ∩i∈IPi = {0} if and only if
A is a subdirect product of chain autometrized l-algebras.

Proof. Clearly, all the ideals of A are strong. Suppose there is a family {Pi}i∈I of
prime ideals of A with ∩i∈IPi = {0}. To show that A is a subdirect product of chain
autometrized l-algebras. Let Ai = A/Pi for i ∈ I. By theorem (5.6); Ai are chain
autometrized l-algebras.

Now define, α : A →
∏

i∈I Ai by α(a) = (a ∗ P1, a ∗ P2, . . .) ∀a ∈ A. Since
∩i∈IPi = {0}; implies that ker(α) = ∩i∈IPi = {0}. Thus α is injective.

Consider πi ◦ α : A → Ai where πi is the i-th projection map. Since πi ◦ α(a) =
πi(α(a)) = πi(a ∗ P1, a ∗ P2, . . .) = a ∗ Pi; therefore πi ◦ α is an onto map. Thus, A
is a subdirect product of the chain autometrized l-algebras {Ai}i∈I .

Conversely, suppose A is a subdirect product of chain autometrized l-algebras
{Ai}i∈I . To show that there is a family {Pi}i∈I of prime ideals of A with ∩i∈IPi = {0}.
Let α : A→

∏
i∈I Ai be a monomorphism where Ai are chain autometrized l-algebras.

Clearly, πi ◦α : A→ Ai is onto. Let ker(πi ◦α) = Pi for i ∈ I. Therefore, A/Pi
∼= Ai.

This implies that A/Pi is a chain. By theorem (4.13), Pi is a prime strong ideal.
Clearly, {0} ∈ ∩i∈IPi. Let x ∈ ∩i∈IPi. Therefore, πi(α(x)) = 0i ∀ i ∈ I. This

implies that α(x) = 0. Since α is injective; implies that x = 0. Hence ∩i∈IPi = {0}.
Thus, there is a family {Pi}i∈I of prime ideals of A with ∩i∈IPi = {0}.

Theorem 5.11. Let A be a weak chain monoid normal autometrized l-algebra.
Then, the following are equivalent:

(i): A is representable,
(ii): A is a subdirect product of chain autometrized l-algebras,
(iii): there exists a family {Pi}i∈I of prime ideals of A with ∩i∈IPi = {0},
(iv): Every subdirectly irreducible order-reversing homomorphic image of A is

chain.

Proof. (i)⇒ (ii): It follows from the definition (5.9).
(ii)⇒ (iii): It follows from theorem (5.10).
(iii)⇒ (iv): Suppose that there exists a family {Pi}i∈I of prime ideals of A with
∩i∈IPi = {0}. To show that every subdirectly irreducible order-reversing homo-
morphic image of A is a chain.
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Let B be a subdirectly irreducible and order-reversing homomorphic image
of A. Clearly, B is a monoid autometrized l-algebra.

Let α : A → B be order-reversing epimorphism. Therefore, B = α(A). By
theorem (2.11); {α(Pi)}i∈I are prime ideals of B such that α(Pi) = {α(x) ∈ B :
x ∈ Pi}. Clearly, {α(Pi)}i∈I are prime strong ideals of B.

To show that ∩i∈Iα(Pi) = {0}. Let x ∈ ∩i∈Iα(Pi). Then x ∈ α(Pi) ∀ i ∈ I.
Since α is on to; there exists a ∈ Pi ∀ i ∈ I such that α(a) = x. This implies
that a ∈ ∩i∈IPi = {0}. Therefore, a = 0. It is clear that x = α(a) = α(0) = 0;
and hence ∩i∈Iα(Pi) = {0}. Thus, B satisfies theorem (5.10). That is B is
a subdirect product of chain autometrized l-algebras. Say {Bi}i∈I . Therefore
γ : B →

∏
i∈I Bi is embedding.

Since B is subdirectly irreducible; there exists i ∈ I such that πi ◦γ : A→ Ai

is an isomorphism. Therefore, B = Bi for some i ∈ I. Since Bi is chain; B is
chain.

(iv)⇒ (i): Suppose that every subdirectly irreducible order-reversing homomor-
phic image of A is chain. To show that A is representable.

We know that A can be represented as a subdirect product of subdirectly
irreducible autometrized l-algebras. Therefore, there exists an embedding; α :
A→

∏
i∈I Ai such that πi ◦ α : A→ Ai is epimorphism. This implies that each

Ai is a subdirectly irreducible order-reversing homomorphic image of A. Hence
each Ai is chain ∀ i ∈ I. Therefore, A is represented as a subdirect product of
chain autometrized l-algebras. Thus A is representable.

Theorem 5.12. Let A be a monoid autometrized algebra. Then, the followings
are equivalent:

(i): A is nilradical,
(ii): there is a family {Mi}i∈I of maximal ideals of A with ∩i∈IMi = {0},
(iii): A is a subdirect product of simple autometrized algebra.

Proof. (i)⇒ (ii): By the definition nilradical = Rad(A) =
⋂
{M : M is a

maximal ideal of A} = {0}.
(ii)⇒ (iii): Suppose there is a family {Mi}i∈I of maximal ideals ofA with ∩i∈IMi =
{0}.

To show that A is a subdirect product of simple autometrized algebras. Let
Ai = A/Mi for i ∈ I. By theorem (4.13); Ai are simple autometrized algebras.
Now define, α : A →

∏
i∈I Ai by α(a) = (a ∗M1, a ∗M2, . . .) ∀a ∈ A. Since

∩i∈IMi = {0}; implies that ker(α) = ∩i∈IMi = {0}. Thus α is injective by
theorem (3.12).

Consider πi◦α : A→ Ai where πi is the i-th projection map. Since πi◦α(a) =
πi(α(a)) = πi(a ∗M1, a ∗M2, . . .) = a ∗Mi; therefore πi ◦ α is an onto map.
Thus, A is a subdirect product of the simple autometrized algebra {Ai}i∈I .

(iii)⇒ (i): Suppose A is a subdirect product of simple autometrized algebras
{Ai}i∈I .

To show that A is nilradical. Let α : A →
∏

i∈I Ai be a monomorphism
where Ai are simple autometrized algebras. Clearly, πi ◦α : A→ Ai is onto. Let
ker(πi ◦ α) = Mi for i ∈ I. Therefore, A/Mi

∼= Ai. This implies that A/Mi is
simple. By theorem (4.13), Mi is maximal.
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Clearly, {0} ∈ Rad(A). Let x ∈ ∩i∈IMi. So, x ∈ Mi. Therefore, πi(α(x)) =
0i ∀ i ∈ I. This implies that α(x) = 0. Since α is injective; implies that x = 0.
Therefore ∩i∈IMi = {0}. It is easily to show that Rad(A) =

⋂
{M : M is a

maximal ideal of A} ⊆ ∩i∈IMi. Hence Rad(A) = {0}. Thus, A is nilradical.

Theorem 5.13. Let A be a weak chain monoid normal autometrized l-algebra.
Then, the followings are equivalent:

(i): A is nilradical,
(ii): there is a family {Mi}i∈I of maximal ideals of A with ∩i∈IMi = {0},
(iii): A is a subdirect product of simple chain autometrized l-algebras.

Proof. It is a direct consequence of theorems (5.10) and (5.12).

Corollary 5.14. Let A be a weak chain monoid normal autometrized l-algebra.
If A is nilradical, then it is representable.

Proof. It follows from theorem (5.13).

Theorem 5.15. Let A be a weak chain monoid normal autometrized l-algebra. If
A is representable, then

(i): n(a ∧ b) = na ∧ nb ∀ a, b ∈ A.
(ii): n(a ∨ b) = na ∨ nb ∀ a, b ∈ A

Proof. Since A is representable, A is represented as a subdirect product of chain
autometrized l-algebras. Therefore, there exists an embedding; α : A→

∏
i∈I Ai such

that Ai is chain. Clearly, A ∼= α(A).

(i): Let ai, bi ∈ Ai. If ai ≤ bi, then ai ∧ bi = ai. Since Ai is translation invariant;
ai + ai ≤ bi + ai ≤ bi + bi. So, 2ai ≤ 2bi. Assume that nai ≤ nbi. Then
(n+ 1)ai = nai + ai ≤ nbi + ai ≤ nbi + bi = (n+ 1)bi. By induction; nai ≤ nbi.
Therefore, n(ai ∧ bi) = nai = nai ∧ nbi.

Now consider, a = (ai)i∈I , b = (bi)i∈I ∈
∏

i∈I Ai. Then,

n(a ∧ b) = n((ai)i∈I ∧ (bi)i∈I).

= n((ai ∧ bi)i∈I).
= (n(ai ∧ bi))i∈I .
= (nai ∧ nbi)i∈I .
= (nai)i∈I ∧ (nbi)i∈I .

= n(ai)i∈I ∧ n(bi)i∈I .

= na ∧ nb.
Therefore, it holds in

∏
i∈I Ai. Therefore, it holds in α(A). Hence n(a ∧ b) =

nb = na ∧ nb holds in A.
(ii): Let ai, bi ∈ Ai. If ai ≤ bi, then ai ∨ bi = bi. By similar argument as (i);
nai ≤ nbi. Therefore, n(ai ∨ bi) = nbi = nai ∨ nbi holds in Ai. Also, it holds in∏

i∈I Ai. Therefore, it holds in α(A). Hence n(a∨ b) = nb = na∨nb holds in A.

Example 5.16. Let A = {0, a, b, c} with 0 ≤ a, b ≤ c and elements a, b are
incomparable. Define ∗ and + by the following tables.
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∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

+ 0 a b c
0 0 a b c
a a a c c
b b c b c
c c c c c

Clearly, A is an autometrized l-algebra. Here A is representable. Clearly, a∧ b = 0
implies that n(a ∧ b) = 0.

And we easily see that na∧nb = a∧b = 0. Therefore, n(a∧b) = na∧nb. Similarly,
a ∨ b = c and implies that n(a ∨ b) = c. And we easily see that na ∨ nb = a ∨ b = c.
Therefore, n(a ∨ b) = na ∨ nb.

6. Conclusion

In this paper, we introduced the concept of direct products and discussed some
basic facts about distant ideals. We also introduced the definition of directly in-
decomposable in an autometrized algebra. Furthermore, we presented the concept
of a subdirect product and simple autometrized algebra and its behavior. We also
introduced the definition of subdirectly irreducible in an autometrized algebra. We
also proved that every subdirectly irreducible monoid autometrized algebra is directly
indecomposable. Lastly, we discussed different properties of chain autometrized al-
gebra and introduced the representability in autometrized algebra. We also showed
that every nilradical monoid autometrized algebra is a subdirect product of simple
autometrized algebras. In the future, we may explore the concepts of Archimedean
autometrized algebra and varieties in autometrized algebra.
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[11] J. Rachŭnek, Spectra of autometrized lattice algebras, Math. Bohem. 123 (1) (1998), 87–94.
[12] M. E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslov. Math. J. 44 (1)

(1994), 81–90.
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