DOI QR코드

DOI QR Code

Survey of the Arithmetic and Geometric Approach to the Schottky Problem

  • 투고 : 2023.03.07
  • 심사 : 2023.05.07
  • 발행 : 2023.12.31

초록

In this article, we discuss and survey the recent progress towards the Schottky problem, and make some comments on the relations between the André-Oort conjecture, Okounkov convex bodies, Coleman's conjecture, stable modular forms, Siegel-Jacobi spaces, stable Jacobi forms and the Schottky problem.

키워드

과제정보

This work was supported by the Max-Planck-Institut fur Mathematik in Bonn.

참고문헌

  1. V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2), 155(3)(2002), 611-708. https://doi.org/10.2307/3062130
  2. V. Alexeev and A. Brunyate, Extending the Torelli map to toroidal compactifications of Siegel space, Invent. Math., 188(1)(2012), 175-196. https://doi.org/10.1007/s00222-011-0347-2
  3. V. Alexeev, R. Livingston, J. Tenini, M. Arap, X. Hu, L. Huckaba, P. McFaddin, S. Musgrave, J. Shin and C. Ulrch, Extending Torelli map to the Igusa blowup in genus 6, 7, and 8, Exp. Math., 21(2)(2012), 193-203. https://doi.org/10.1080/10586458.2012.632755
  4. Y. Andre, G-functions and Geometry, Aspects of Mathematics E13, Vieweg, Braunschweig (1989).
  5. A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21(1967), 189-238.
  6. E. Arbarello and C. De Concini, On a set of equations characterizing Riemann matrices, Ann. of Math. (2), 120(1)(1984), 119-140. https://doi.org/10.2307/2007073
  7. E. Arbarello and C. De Concini, Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces, Duke Math. J., 54(1)(1987), 163-178. https://doi.org/10.1215/S0012-7094-87-05412-3
  8. E. Arbarello and E. Sernesi, The equation of a plane curve, Duke Math. J., 46(2)(1979), 469-485. https://doi.org/10.1215/S0012-7094-79-04622-2
  9. A. Ash, D. Mumford, M. Rapoport and Y.-S. Tai, Smooth Compactifications of Locally Symmetric Varieties, Cambridge University Press, Cambridge, 2010, x+230 pp.
  10. W. L. Baily, Jr., On the theory of θ-functions, the moduli of abelian varieties, and the moduli of curves, Ann. of Math. (2), 75(1962), 342-381. https://doi.org/10.2307/1970178
  11. E. Balslev, Spectral theory of the Laplacian on the modular Jacobi group manifold, preprint, Aarhus University (2012).
  12. A. Beauville, J.-L. Colliot-Thelene, J.-J. Sansuc and P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles (French), Ann. and Math. (2), 121(2)(1985), 283-318. https://doi.org/10.2307/1971174
  13. A. Beauville and O. Debarre, Une relation entre deux approches du probleme de Schottky, Invent. Math., 86(1)(1986), 192-207. https://doi.org/10.1007/BF01391500
  14. A. Beauville and O. Debarre, Sur le probleme de Schottky pour les varietes de Prym, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14(4)(1987), 613-623.
  15. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progr. Math. 163, Birkhauser Verlag, Basel, 1998, xiv+213 pp.
  16. F. A. Bogomolov and P. I. Katsylo, Rationality of some quotient varieties, Math. USSR Sbornik., 54(2)(1986), 571-576. https://doi.org/10.1070/SM1986v054n02ABEH002986
  17. H. Burkhardt, Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, Math. Ann., 38(2)(1891), 161-224. https://doi.org/10.1007/BF01199251
  18. P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane), Invent. Math., 117(1)(1994), 27-56. https://doi.org/10.1007/BF01232233
  19. M. C. Chang and Z. Ran, Unirationality of the moduli spaces of curves of genus 11, 13 (and 12), Invent. Math., 76(1)(1984), 41-54. https://doi.org/10.1007/BF01388490
  20. S. R. Choi, Y. Hyun, J. Park and J. Won, Okounkov bodies associated to pseudoeffective divisors, J. Lond. Math. Soc. (2), 97(2)(2018), 170-195. https://doi.org/10.1112/jlms.12107
  21. H. Clemens, Double Solids, Adv. in Math., 47(2)(1983), 107-230. https://doi.org/10.1016/0001-8708(83)90025-7
  22. H. Clemens and P. Griffiths, The Intermediate Jacobian of the Cubic Threefolds, Ann. of Math. (2), 95(1972), 281-356. https://doi.org/10.2307/1970801
  23. G. Codogni, Hyperelliptic Schottky problem and stable modular forms, Doc. Math., 21(2016), 445-466. https://doi.org/10.4171/dm/538
  24. G. Codogni and N. I. Shepherd-Barron, The non-existence of stable Schottky forms, Compos. Math., 150(4)(2014), 679-690. https://doi.org/10.1112/S0010437X13007586
  25. R. Coleman, Torsion points on curves, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, 235-247. https://doi.org/10.2969/aspm/01210235
  26. O. Debarre, Varietes de Prym et ensembles d'Andreotti et Mayer, Duke Math. J., 60(3)(1990), 599-630. https://doi.org/10.1215/S0012-7094-90-06024-7
  27. O. Debarre, Minimal cohomology classes and Jacobians, J. Algebraic Geom., 4(2)(1995), 321-335.
  28. O. Debarre, Seshadri constants of abelian varieties, Universita di Torino, Dipartimento di Matematica, Turin, 2004, 379-394.
  29. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Etudes Sci. Publ. Math., 36(1969), 75-109. https://doi.org/10.1007/BF02684599
  30. R. Donagi, The unirationality of A5, Ann. of Math., 119(1984), 269-307. https://doi.org/10.2307/2007041
  31. R. Donagi, Big Schottky, Invent. Math., 89(3)(1987), 569-599. https://doi.org/10.1007/BF01388986
  32. R. Donagi, The Schottky problem, Lecture Notes in Math. 1337, Springer-Verlag, Berlin, 1337(1988), 84-137.
  33. L. van den Dries, Remarks on Tarski's problem concerning (ℝ, +, ·, exp), in Logic Dolloquium'82 (Florence, 1982) (G. Lolli, G. Longo and A. Marcja, eds.), Stud. Logic Found. Math., North-Holland, Amsterdam, 112(1984), 97-121.
  34. L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc., 15(2)(1986), 189-193. https://doi.org/10.1090/S0273-0979-1986-15468-6
  35. J. Dulinski, A decomposition theorem for Jacobi forms, Math. Ann., 303(3)(1995), 473-498. https://doi.org/10.1007/BF01461001
  36. P. Ebenfelt, M. Xiao and H. Xu, Kahler-Einstein metrics and obstruction flatness of circle bundles, J. Math. Pures Appl. (9), 177(2023), 368-414.
  37. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progr. Math., 55, Birkhauser Boston, Inc., Boston, MA, 1985, v+148 pp.
  38. L. Ein and R. Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc., 10(1)(1997), 243-258. https://doi.org/10.1090/S0894-0347-97-00223-3
  39. D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math., 90(2)(1987), 359-387. https://doi.org/10.1007/BF01388710
  40. G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3), 22 [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1990, xii+316 pp.
  41. H. Farkas, Schottky-Jung theory, Proc. Sympos. Pure Math., 49, Part 1, American Mathematical Society, Providence, RI, 1989, 459-483.
  42. J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin-New York, 1973, iv+137 pp.
  43. J. Fay, On the even-order vanishing of Jacobian theta functions, Duke Math. J., 51(1)(1984), 109-132. https://doi.org/10.1215/S0012-7094-84-05106-8
  44. E. Freitag, Die Kodairadimension von Korpern automorpher Funktionen, J. Reine Angew. Math., 296(1977), 162-170.
  45. E. Freitag, Stabile Modulformen, Math. Ann., 230(3)(1977), 197-211. https://doi.org/10.1007/BF01367576
  46. E. Freitag, Thetareihen mit harmonischen Koeffizienten zur Siegelschen Modulgruppe, Math. Ann., 254(1)(1980), 27-51. https://doi.org/10.1007/BF01457884
  47. E. Freitag, Die Irreduzibilitat der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math. (Basel), 40(3)(1983), 255-259. https://doi.org/10.1007/BF01192778
  48. E. Freitag, Siegelsche Modulfunktionen, Grundlehren Math. Wiss., 254 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1983, x+341 pp.
  49. E. Freitag, Holomorphic tensors on subvarieties of the Siegel modular variety, Progr. Math., 46, Birkhauser Boston, Inc., Boston, MA, 1984, 93-113.
  50. E. Freitag and K. Pommerening, Regulare Differentialformen des Korpers der Siegelschen Modulfunktionen, J. Reine Angew. Math., 331(1982), 207-220.
  51. G. Frobenius, Uber die Beziehungen zwischen 28 Doppeltangenten einer eben Curve vierte Ordnung, J. Reine Angew. Math., 99(1886), 275-314. https://doi.org/10.1515/crll.1886.99.275
  52. Z. Gao, Towards the Andre-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math., 732(2017), 85-146.
  53. B. van Geeman, Siegel modular forms vanishing on the moduli space of curves, Invent. Math., 78(2)(1984), 329-349. https://doi.org/10.1007/BF01388598
  54. B. van Geeman and G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math., 108(3)(1986), 615-641. https://doi.org/10.2307/2374657
  55. G. van der Geer, On the geometry of a Siegel modular threefold, Math. Ann., 260(3)(1982), 317-350. https://doi.org/10.1007/BF01461467
  56. G. van der Geer, Note on abelian schemes of level three, Math. Ann., 278(1987), 401-408. https://doi.org/10.1007/BF01458077
  57. G. van der Geer, The Chow ring of the moduli space of abelian threefolds, J. Alagebraic Geom., 7(4)(1998), 753-770.
  58. S. Grushevsky, Geometry of 𝒜g and Its compactifications, Proc. Sympos. Pure Math. 80, Part 1, American Mathematical Society, Providence, RI, 2009, 193-234.
  59. S. Grushevsky, A special case of the Γ00 conjecture, Liasion, Schottky problem and invariant theory, Progress in Math. 280, Birkhauser Verlag, Basel, 2010, 223-231.
  60. S. Grushevsky, The Schottky problem, Math. Sci. Res. Inst. Publ. 59, Cambridge University Press, Cambridge, 2012, 129-164.
  61. S. Grushevsky and K. Hulek, Geometry of theta divisors-a survey, Clay Math. Proc. 18, American Mathematical Society, Providence, RI, 2013, 361-390.
  62. S. Grushevsky and I. Krichver, Integrable discrete Schrodinger equations and a characterization of Prym varieties by a pair of quadrisecants, Duke Math. J., 152(2)(2010), 317-371. https://doi.org/10.1215/00127094-2010-014
  63. S. Grushevsky and R. Salvati Manni, Jacobians with a vanishing theta-null in genus 4, Israel J. Math., 164(2008), 303-315. https://doi.org/10.1007/s11856-008-0031-4
  64. S. Grushevsky and R. Salvati Manni, The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math., 133(4)(2011), 1007-1027. https://doi.org/10.1353/ajm.2011.0028
  65. R. C. Gunning, Some curves in abelian varieties, Invent. Math., 66(3)(1982), 377-389. https://doi.org/10.1007/BF01389218
  66. R. C. Gunning, Some identities for abelian integrals, Amer. J. Math., 108(1)(1986), 39-74. https://doi.org/10.2307/2374468
  67. J. Harris, On the Kodaira dimension of the moduli space of curves. II. The even genus case, Invent. Math., 75(3)(1984), 437-466. https://doi.org/10.1007/BF01388638
  68. J. Harris and K. Hulek, A remark on the Schottky locus in genus 4, Universita di Torino, Dipartimento di Matematica, Turin, 2004, 479-483.
  69. J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math., 67(1)(1982), 23-88. https://doi.org/10.1007/BF01393371
  70. K. Hulek and G. K. Sankaran, The geometry of Siegel modular varieties, Adv. Stud. Pure Math. 35, Mathematical Society of Japan, Tokyo, 2002, 89-156. https://doi.org/10.2969/aspm/03510089
  71. J. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann., 168(1967), 228-260. https://doi.org/10.1007/BF01361555
  72. J. Igusa, Theta Functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972, x+232 pp.
  73. J. Igusa, On the irreducibility of Schottky divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3)(1981), 531-545.
  74. P. Katsylo, Rationality of the moduli variety of curves of genus 3, Comment. Math. Helv., 71(4)(1996), 507-524. https://doi.org/10.1007/BF02566434
  75. G. Khan and J. Zhang, A hall of statistical mirrors, Asian J. Math., 26(6)(2022), 809-846. https://doi.org/10.4310/AJM.2022.v26.n6.a3
  76. B. Klingler and A. Yafaev, The Andre-Oort conjecture, Ann. of Math. (2), 180(3)(2014), 867-925. https://doi.org/10.4007/annals.2014.180.3.2
  77. J. Kollar and F. O. Schreyer, The moduli of curves is stably rational for g ≤ 6, Duke Math. J., 51(1)(1984), 239-242. https://doi.org/10.1215/S0012-7094-84-05113-5
  78. J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. Reine Angew. Math., 458(1995), 157-182.
  79. I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys, 32(1977), 185-213. https://doi.org/10.1070/RM1977v032n06ABEH003862
  80. I. M. Krichever, Characterizing Jacobians via trisecants of the Kummer variety, Ann. of Math. (2), 172(1)(2010), 485-516. https://doi.org/10.4007/annals.2010.172.485
  81. R. Lazarsfeld and M. Mustata, Convex bodies associated to linear system, Ann. Sci. Ec. Norm. Super. (4), 42(5)(2009), 783-835. https://doi.org/10.24033/asens.2109
  82. R. Lee and S. H. Weintraub, Cohomology of Sp4(ℤ) and related groups and spaces, Topology, 24(4)(1985), 391-410. https://doi.org/10.1016/0040-9383(85)90011-4
  83. K. Liu, X. Sun and S.-T. Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differntial Geom., 68(3)(2004), 571-637. https://doi.org/10.4310/jdg/1116508767
  84. K. Liu, X. Sun and S.-T. Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differntial Geom., 69(1)(2005), 163-216. https://doi.org/10.4310/jdg/1121540343
  85. K. Liu, X. Sun and S.-T. Yau, Good geometry on the curve moduli, Publ. Res. Inst. Math. Sci., 44(2)(2008), 699-724. https://doi.org/10.2977/prims/1210167341
  86. K. Liu, X. Sun and S.-T. Yau, Goodness of canonical metrics on the moduli space of Riemann surfaces, Pure Appl. Math. Q., 10(2)(2014), 223-243. https://doi.org/10.4310/PAMQ.2014.v10.n2.a2
  87. K. Liu, X. Sun, X. Yang and S.-T. Yau, Curvatures of moduli space of curves and applications, Asian J. Math., 21(5)(2017), 841-854. https://doi.org/10.4310/AJM.2017.v21.n5.a3
  88. H. Maass, Uber die Darstellung der Modulformen n-ten Grades durch Poincaresche Reihen, Math. Ann., 123(1951), 125-151. https://doi.org/10.1007/BF02054945
  89. H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann., 126(1953), 44-68. https://doi.org/10.1007/BF01343149
  90. H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-New York, 1971, v+328 pp.
  91. R. MacPherson and M. McConnell, Explicit reduction theory for Siegel modular threefolds, Invent. Math., 111(3)(1993), 575-625. https://doi.org/10.1007/BF01231300
  92. T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math., 32(1959), 1-19.
  93. M. Melo and F. Viviani, Comparing perfect and 2nd Voronoi decompositions: the matroidal locus, Math. Ann., 354(4)(2012), 1521-1554. https://doi.org/10.1007/s00208-011-0774-9
  94. B. Moonen, Linearity properties of Shimura varieties. I, J. Algebric Geom., 7(3)(1998), 539-567.
  95. S. Morel, Cohomologie d'intersection des varietes modulaires de Siegel, suite (French), Compos. Math., 147(6)(2011), 1671-1740. https://doi.org/10.1112/S0010437X11005409
  96. M. Mulase, Cohomological structure in soliton equations and Jacobian varieties, J. Differential Geom., 19(2)(1984), 403-430. https://doi.org/10.4310/jdg/1214438685
  97. D. Mumford, Hirzebruch's proportionality theorem in the non-compact case, Invent. Math., 42(1)(1977), 239-272. https://doi.org/10.1007/BF01389790
  98. D. Mumford, An algebro-geometric construction of commuting operators and of solution to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Kinokuniya Book Store Co., Ltd., Tokyo, 1978, pp. 115-153.
  99. D. Mumford, On the Kodaira dimension of the Siegel modular variety, Lecture Notes in Math. 997, Springer-Verlag, Berlin, 1983, 348-375.
  100. D. Mumford, Tata Lectures on Theta. I, Progr. Math. 28, Birkhauser Boston, Inc., Boston, MA, 1983, xiii+235 pp.
  101. D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), 34 [Results in Mathematics and Related Areas (2)] Springer-Verlag, Berlin, 1994, xiv+292 pp.
  102. Y. Namikawa, On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform, Nagoya Math. J., 52(1973), 197-259. https://doi.org/10.1017/S002776300001597X
  103. Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. I, Math. Ann., 221(2)(1976), 97-141. https://doi.org/10.1007/BF01433145
  104. Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. II, Math. Ann., 221(3)(1976), 201-241. https://doi.org/10.1007/BF01596390
  105. Y. Namikawa, Toroidal compactification of Siegel spaces, Lecture Notes in Math. 812, Springer, Berlin, 1980, viii+162 pp.
  106. A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math., 125(3)(1996), 405-411. https://doi.org/10.1007/s002220050081
  107. A. Okounkov, Why would multiplicities be log-concave?, in The orbit method in geometry and physics (Marseille, 2000), Progr. Math. 213, Birkhauser Boston, Inc., Boston, MA, 2003, 329-347.
  108. F. Oort, Canonical lifts and dense sets of CM points, Arithmetic Geometry, Cortona, 1994, 228-234, F. Catanese, editor, Symposia, Math., XXXVII, CUP (1997).
  109. Y. Peterzil and S. Starchenko, Uniform definability of the Weierstrass ℘ functions and generalized tori of dimension one, Selecta Math., 10(4)(2004), 525-550. https://doi.org/10.1007/s00029-005-0393-y
  110. Y. Peterzil and S. Starchenko, Definability of restricted theta functions and families of abelian varieties, Duke Math. J., 162(4)(2013), 731-765. https://doi.org/10.1215/00127094-2080018
  111. J. Pila, O-minimality and the Andre-Oort conjecture for ℂn, Ann. of Math. (2), 173(3)(2011), 1779-1840. https://doi.org/10.4007/annals.2011.173.3.11
  112. J. Pila, O-minimality and Diophantine geometry, Proceedings of the ICM, Kyung Moon Sa, Seoul, 2014, 547-572.
  113. J. Pila and J. Tsimerman, The Andre-Oort conjecture for the moduli space of abelian surfaces, Compos. Math., 149(2)(2013), 204-216. https://doi.org/10.1112/S0010437X12000589
  114. J. Pila and J. Tsimerman, Ax-Lindemann for 𝒜g, Ann. of Math. (2), 179(2)(2014), 659-681. https://doi.org/10.4007/annals.2014.179.2.5
  115. A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295(2)(1986), 565-592. https://doi.org/10.1090/S0002-9947-1986-0833697-X
  116. Z. Ran, On subvarieties of abelian varieties, Invent. Math., 62(3)(1981), 459-479. https://doi.org/10.1007/BF01394255
  117. Z. Ran, A characterization of five-dimensional Jacobian varieties, Invent. Math., 67(3)(1982), 395-422. https://doi.org/10.1007/BF01398929
  118. B. Riemann, Zur Theorie der Abel'schen Funktionen fur den p = 3, Math. Werke, Teubener, Leipzig, (1876), 456-476.
  119. B. Runge, Theta functions and Siegel-Jacobi functions, Acta Math., 175(2)(1995), 165-196. https://doi.org/10.1007/BF02393304
  120. R. Salvati Manni, Modular varieties with level 2 theta structure, Amer. J. Math., 116(6)(1994), 1489-1511. https://doi.org/10.2307/2375056
  121. G. K. Sankaran, Review on the article,"Theory of the Siegel modular variety" (authored by Jae-Hyun Yang), Zbl 1248.14049, Zentralblatt Math Database, European Math. Soc., FIZ Karlsruhe & Springer-Verlag (2013).
  122. I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc., 20(1956), 259-281.
  123. I. Satake, On the arithmetic of tube domains (blowing-up of the point at infinity), Bull. Amer. Math. Soc., 79(1973), 1076-1094. https://doi.org/10.1090/S0002-9904-1973-13342-7
  124. I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures 4, Iwanami Shoten, TokyoPrinceton University Press, Princeton, NJ, 1980, xvi+321 pp.
  125. F. Schottky, Zur Theorie der Abelschen Functionen von vier Variabeln, J. Reine Angew. Math., 102(1888), 304-352.
  126. F. Schottky and H. Jung, Neue Satze uber Symmetralfunctionen und die Abel'schen Functionen der Riemann'schen Theorie, Akad. Wiss. Berlin, Phys. Math. Kl., (1909), 282-297.
  127. E. Sernesi, Unirationality of the variety of moduli of curves of genus twelve (Italian), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(3)(1981), 405-439.
  128. N. I. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties, Invent. Math., 163(1)(2006), 25-45. https://doi.org/10.1007/s00222-005-0453-0
  129. T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83(2)(1986), 333-382. https://doi.org/10.1007/BF01388967
  130. C. L. Siegel, Symplectic Geometry, Amer. J. Math., 65(1943), 1-86; Academic Press, New York-London, 1964, Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359. https://doi.org/10.2307/2371774
  131. C. L. Siegel, Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables, Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience [A Division of John Wiley & Sons, Inc.], New York-London-Sydney, 1973, ix+244 pp.
  132. R. Smith and R. Varley, Deformation of isolated even double points of corank one, Proc. Amer. Math. Soc., 140(12)(2012), 4085-4096. https://doi.org/10.1090/S0002-9939-2012-11366-8
  133. Y.-S. Tai, On the Kodaira dimension of the moduli spaces of abelian varieties, Invent. Math., 68(3)(1982), 425-439. https://doi.org/10.1007/BF01389411
  134. J. A. Todd, Some types of rational quartic primal in four dimensions, Proc. London Math. Soc. (2), 42(4)(1936), 316-323. https://doi.org/10.1112/plms/s2-42.1.316
  135. S. Trapani, On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann., 293(4)(1992), 681-705. https://doi.org/10.1007/BF01444740
  136. E. Ullmo and A. Yafaev, Galois orbits and equidistribution of special subvarieties: towards the Andre-Oort conjecture, Ann. of Math. (2), 180(3)(2014), 823-865. https://doi.org/10.4007/annals.2014.180.3.1
  137. W. Wang, On the Smooth Compactification of Siegel Spaces, J. Differential Geom., 38(2)(1993), 351-386. https://doi.org/10.4310/jdg/1214454298
  138. W. Wang, On the moduli space of principally polarized abelian varieties, Contemp. Math. 150, American Mathematical Society, Providence, RI, 1993, 361-365. https://doi.org/10.1090/conm/150/01299
  139. H. Weber, Theorie der Abel'schen Funktionen vom Geschlecht 3, Berlin: Druck und Verlag von Georg Reimer, 1876.
  140. R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math., 343(1983), 184-202.
  141. R. Weissauer, Untervarietaten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ, Math. Ann., 275(2)(1986), 207-220. https://doi.org/10.1007/BF01458458
  142. R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. Reine Angew. Math., 391(1988), 100-156.
  143. G. E. Welters, The surface C -C on Jacobi varieties and 2nd order theta functions, Acta Math., 157(1986), 1-22. https://doi.org/10.1007/BF02392589
  144. S. A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math., 85(1)(1986), 119-145. https://doi.org/10.1007/BF01388794
  145. S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom., 31(2)(1990), 417-472. https://doi.org/10.4310/jdg/1214444322
  146. J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups, Nagoya Math. J., 123(1991), 103-117. https://doi.org/10.1017/S0027763000003676
  147. J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences (1993), 33-58.
  148. J.-H. Yang, Stable Jacobi forms, Proc. of Workshops in Pure Mathematics on Number Theory and Algebra, the Korean Academic Council 13, Part I, (1993), 31-51.
  149. J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg, 63(1993), 135-146. https://doi.org/10.1007/BF02941338
  150. J.-H. Yang, Vanishing theorems on Jacobi forms of higher degree, J. Korean Math. Soc., 30(1)(1993), 185-198.
  151. J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups. II, J. Number Theory, 49(1)(1994), 63-72. https://doi.org/10.1006/jnth.1994.1080
  152. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math., 47(6)(1995), 1329-1339. https://doi.org/10.4153/CJM-1995-068-2
  153. J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc., 347(6)(1995), 2041-2049. https://doi.org/10.1090/S0002-9947-1995-1290733-2
  154. J.-H. Yang, A decomposition theorem on differential polynomials of theta functions of high level, Japan. J. Math., 22(1)(1996), 37-49. https://doi.org/10.4099/math1924.22.37
  155. J.-H. Yang, Kac-Moody Algebras, the Monstrous Moonshine, Jacobi Forms and Infinite Products, Proceedings of the 1995 Symposium on Number Theory, Geometry and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences (May 1996), 13-82.
  156. J.-H. Yang, On Theta Functions, Kyungpook Math. J., 35(3)(1996), 857-875.
  157. J.-H. Yang, Fock Representations of the Heisenberg Group H(g,h), J. Korean Math. Soc., 34(2)(1997), 345-370.
  158. J.-H. Yang, Stable Automorphic Forms, Proceedings of Japan-Korea Joint Seminar on Transcendental Number Theory and Related Topics, Masan, Korea (1998), 101-126.
  159. J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J., 40(2)(2000), 209-237.
  160. J.-H. Yang, Lattice Representations of the Heisenberg Groups, Math. Ann., 317(2)(2000), 309-323. https://doi.org/10.1007/s002080000097
  161. J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J., 42(2)(2002), 199-272.
  162. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math., 32(3)(2006), 701-712.
  163. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory, 127(1)(2007), 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
  164. J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc., 45(3)(2008), 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
  165. J.-H. Yang, Theory of the Siegel modular variety, Number Theory and Applications: Proceedings of the International Conferences on Number Theory and Cryptography, edited by S. D. Adhikari and B. Ramakrishnan, Hindustan Book Agency, New Delhi, India, (2009), 219-278.
  166. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. Ser. B, 31(1)(2010), 85-100. https://doi.org/10.1007/s11401-008-0348-7
  167. J.-H. Yang, Heisenberg Groups, Theta Functions and the Weil Representation, KM Kyung Moon Sa, Seoul, 2012, 155 pp.
  168. J.-H. Yang, A Note on Maass-Jacobi Forms II, Kyungpook Math. J., 53(1)(2013), 49-86. https://doi.org/10.5666/KMJ.2013.53.1.49
  169. J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. Korean Math. Soc., 50(2)(2013), 275-306. https://doi.org/10.4134/JKMS.2013.50.2.275
  170. J.-H. Yang, Covariant maps for the Schrodinger-Weil representation, Bull. Korean Math. Soc., 52(2)(2015), 627-647. https://doi.org/10.4134/BKMS.2015.52.2.627
  171. J.-H. Yang, Geometry and Arithmetic on the Siegel-Jacobi Space, Geometry and Analysis on Manifolds: In Memory of Professor Shoshichi Kobayashi (edited by T. Ochiai, A. Weinstein et al), Progress in Mathematics 308, Birkhauser, Springer International Publishing AG Switzerland (2015), 275-325.
  172. J.-H. Yang, Polarized real tori, J. Korean Math. Soc., 52(2)(2015), 269-331. https://doi.org/10.4134/JKMS.2015.52.2.269
  173. J.-H. Yang, Theta sums of higher index, Bull. Korean Math. Soc., 53(6)(2016), 1893-1908. https://doi.org/10.4134/BKMS.b160009
  174. J.-H. Yang, Stable Schottky-Jacobi forms, arXiv:1702.08650 [math.NT].
  175. J. Yang and L. Yin, Differential operators for Siegel-Jacobi forms, Sci. China Math., 59(6)(2016), 1029-1050. https://doi.org/10.1007/s11425-015-5111-4
  176. J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin and G.-H. Min, Sectional Curvatures of the Siegel-Jacobi Space, Bull. Korean Math. Soc., 50(3)(2013), 787-799. https://doi.org/10.4134/BKMS.2013.50.3.787
  177. S.-T. Yau and Y. Zhang, The geometry on smooth toroidal compactifications of Siegel varieties, Amer. J. Math., 136(4)(2014), 859-941. https://doi.org/10.1353/ajm.2014.0024
  178. J. Zhang and G. Khan, Statistical mirror symmetry, Differential Geom. Appl. 73 (2020), 101678, 32 pp.
  179. C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Univ. Hamburg, 59(1989), 191-224. https://doi.org/10.1007/BF02942329