과제정보
This work was supported by the Max-Planck-Institut fur Mathematik in Bonn.
참고문헌
- V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2), 155(3)(2002), 611-708. https://doi.org/10.2307/3062130
- V. Alexeev and A. Brunyate, Extending the Torelli map to toroidal compactifications of Siegel space, Invent. Math., 188(1)(2012), 175-196. https://doi.org/10.1007/s00222-011-0347-2
- V. Alexeev, R. Livingston, J. Tenini, M. Arap, X. Hu, L. Huckaba, P. McFaddin, S. Musgrave, J. Shin and C. Ulrch, Extending Torelli map to the Igusa blowup in genus 6, 7, and 8, Exp. Math., 21(2)(2012), 193-203. https://doi.org/10.1080/10586458.2012.632755
- Y. Andre, G-functions and Geometry, Aspects of Mathematics E13, Vieweg, Braunschweig (1989).
- A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21(1967), 189-238.
- E. Arbarello and C. De Concini, On a set of equations characterizing Riemann matrices, Ann. of Math. (2), 120(1)(1984), 119-140. https://doi.org/10.2307/2007073
- E. Arbarello and C. De Concini, Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces, Duke Math. J., 54(1)(1987), 163-178. https://doi.org/10.1215/S0012-7094-87-05412-3
- E. Arbarello and E. Sernesi, The equation of a plane curve, Duke Math. J., 46(2)(1979), 469-485. https://doi.org/10.1215/S0012-7094-79-04622-2
- A. Ash, D. Mumford, M. Rapoport and Y.-S. Tai, Smooth Compactifications of Locally Symmetric Varieties, Cambridge University Press, Cambridge, 2010, x+230 pp.
- W. L. Baily, Jr., On the theory of θ-functions, the moduli of abelian varieties, and the moduli of curves, Ann. of Math. (2), 75(1962), 342-381. https://doi.org/10.2307/1970178
- E. Balslev, Spectral theory of the Laplacian on the modular Jacobi group manifold, preprint, Aarhus University (2012).
- A. Beauville, J.-L. Colliot-Thelene, J.-J. Sansuc and P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles (French), Ann. and Math. (2), 121(2)(1985), 283-318. https://doi.org/10.2307/1971174
- A. Beauville and O. Debarre, Une relation entre deux approches du probleme de Schottky, Invent. Math., 86(1)(1986), 192-207. https://doi.org/10.1007/BF01391500
- A. Beauville and O. Debarre, Sur le probleme de Schottky pour les varietes de Prym, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14(4)(1987), 613-623.
- R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progr. Math. 163, Birkhauser Verlag, Basel, 1998, xiv+213 pp.
- F. A. Bogomolov and P. I. Katsylo, Rationality of some quotient varieties, Math. USSR Sbornik., 54(2)(1986), 571-576. https://doi.org/10.1070/SM1986v054n02ABEH002986
- H. Burkhardt, Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, Math. Ann., 38(2)(1891), 161-224. https://doi.org/10.1007/BF01199251
- P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane), Invent. Math., 117(1)(1994), 27-56. https://doi.org/10.1007/BF01232233
- M. C. Chang and Z. Ran, Unirationality of the moduli spaces of curves of genus 11, 13 (and 12), Invent. Math., 76(1)(1984), 41-54. https://doi.org/10.1007/BF01388490
- S. R. Choi, Y. Hyun, J. Park and J. Won, Okounkov bodies associated to pseudoeffective divisors, J. Lond. Math. Soc. (2), 97(2)(2018), 170-195. https://doi.org/10.1112/jlms.12107
- H. Clemens, Double Solids, Adv. in Math., 47(2)(1983), 107-230. https://doi.org/10.1016/0001-8708(83)90025-7
- H. Clemens and P. Griffiths, The Intermediate Jacobian of the Cubic Threefolds, Ann. of Math. (2), 95(1972), 281-356. https://doi.org/10.2307/1970801
- G. Codogni, Hyperelliptic Schottky problem and stable modular forms, Doc. Math., 21(2016), 445-466. https://doi.org/10.4171/dm/538
- G. Codogni and N. I. Shepherd-Barron, The non-existence of stable Schottky forms, Compos. Math., 150(4)(2014), 679-690. https://doi.org/10.1112/S0010437X13007586
- R. Coleman, Torsion points on curves, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, 235-247. https://doi.org/10.2969/aspm/01210235
- O. Debarre, Varietes de Prym et ensembles d'Andreotti et Mayer, Duke Math. J., 60(3)(1990), 599-630. https://doi.org/10.1215/S0012-7094-90-06024-7
- O. Debarre, Minimal cohomology classes and Jacobians, J. Algebraic Geom., 4(2)(1995), 321-335.
- O. Debarre, Seshadri constants of abelian varieties, Universita di Torino, Dipartimento di Matematica, Turin, 2004, 379-394.
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Etudes Sci. Publ. Math., 36(1969), 75-109. https://doi.org/10.1007/BF02684599
- R. Donagi, The unirationality of A5, Ann. of Math., 119(1984), 269-307. https://doi.org/10.2307/2007041
- R. Donagi, Big Schottky, Invent. Math., 89(3)(1987), 569-599. https://doi.org/10.1007/BF01388986
- R. Donagi, The Schottky problem, Lecture Notes in Math. 1337, Springer-Verlag, Berlin, 1337(1988), 84-137.
- L. van den Dries, Remarks on Tarski's problem concerning (ℝ, +, ·, exp), in Logic Dolloquium'82 (Florence, 1982) (G. Lolli, G. Longo and A. Marcja, eds.), Stud. Logic Found. Math., North-Holland, Amsterdam, 112(1984), 97-121.
- L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc., 15(2)(1986), 189-193. https://doi.org/10.1090/S0273-0979-1986-15468-6
- J. Dulinski, A decomposition theorem for Jacobi forms, Math. Ann., 303(3)(1995), 473-498. https://doi.org/10.1007/BF01461001
- P. Ebenfelt, M. Xiao and H. Xu, Kahler-Einstein metrics and obstruction flatness of circle bundles, J. Math. Pures Appl. (9), 177(2023), 368-414.
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progr. Math., 55, Birkhauser Boston, Inc., Boston, MA, 1985, v+148 pp.
- L. Ein and R. Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc., 10(1)(1997), 243-258. https://doi.org/10.1090/S0894-0347-97-00223-3
- D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math., 90(2)(1987), 359-387. https://doi.org/10.1007/BF01388710
- G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3), 22 [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1990, xii+316 pp.
- H. Farkas, Schottky-Jung theory, Proc. Sympos. Pure Math., 49, Part 1, American Mathematical Society, Providence, RI, 1989, 459-483.
- J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin-New York, 1973, iv+137 pp.
- J. Fay, On the even-order vanishing of Jacobian theta functions, Duke Math. J., 51(1)(1984), 109-132. https://doi.org/10.1215/S0012-7094-84-05106-8
- E. Freitag, Die Kodairadimension von Korpern automorpher Funktionen, J. Reine Angew. Math., 296(1977), 162-170.
- E. Freitag, Stabile Modulformen, Math. Ann., 230(3)(1977), 197-211. https://doi.org/10.1007/BF01367576
- E. Freitag, Thetareihen mit harmonischen Koeffizienten zur Siegelschen Modulgruppe, Math. Ann., 254(1)(1980), 27-51. https://doi.org/10.1007/BF01457884
- E. Freitag, Die Irreduzibilitat der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math. (Basel), 40(3)(1983), 255-259. https://doi.org/10.1007/BF01192778
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren Math. Wiss., 254 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1983, x+341 pp.
- E. Freitag, Holomorphic tensors on subvarieties of the Siegel modular variety, Progr. Math., 46, Birkhauser Boston, Inc., Boston, MA, 1984, 93-113.
- E. Freitag and K. Pommerening, Regulare Differentialformen des Korpers der Siegelschen Modulfunktionen, J. Reine Angew. Math., 331(1982), 207-220.
- G. Frobenius, Uber die Beziehungen zwischen 28 Doppeltangenten einer eben Curve vierte Ordnung, J. Reine Angew. Math., 99(1886), 275-314. https://doi.org/10.1515/crll.1886.99.275
- Z. Gao, Towards the Andre-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math., 732(2017), 85-146.
- B. van Geeman, Siegel modular forms vanishing on the moduli space of curves, Invent. Math., 78(2)(1984), 329-349. https://doi.org/10.1007/BF01388598
- B. van Geeman and G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math., 108(3)(1986), 615-641. https://doi.org/10.2307/2374657
- G. van der Geer, On the geometry of a Siegel modular threefold, Math. Ann., 260(3)(1982), 317-350. https://doi.org/10.1007/BF01461467
- G. van der Geer, Note on abelian schemes of level three, Math. Ann., 278(1987), 401-408. https://doi.org/10.1007/BF01458077
- G. van der Geer, The Chow ring of the moduli space of abelian threefolds, J. Alagebraic Geom., 7(4)(1998), 753-770.
- S. Grushevsky, Geometry of 𝒜g and Its compactifications, Proc. Sympos. Pure Math. 80, Part 1, American Mathematical Society, Providence, RI, 2009, 193-234.
- S. Grushevsky, A special case of the Γ00 conjecture, Liasion, Schottky problem and invariant theory, Progress in Math. 280, Birkhauser Verlag, Basel, 2010, 223-231.
- S. Grushevsky, The Schottky problem, Math. Sci. Res. Inst. Publ. 59, Cambridge University Press, Cambridge, 2012, 129-164.
- S. Grushevsky and K. Hulek, Geometry of theta divisors-a survey, Clay Math. Proc. 18, American Mathematical Society, Providence, RI, 2013, 361-390.
- S. Grushevsky and I. Krichver, Integrable discrete Schrodinger equations and a characterization of Prym varieties by a pair of quadrisecants, Duke Math. J., 152(2)(2010), 317-371. https://doi.org/10.1215/00127094-2010-014
- S. Grushevsky and R. Salvati Manni, Jacobians with a vanishing theta-null in genus 4, Israel J. Math., 164(2008), 303-315. https://doi.org/10.1007/s11856-008-0031-4
- S. Grushevsky and R. Salvati Manni, The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math., 133(4)(2011), 1007-1027. https://doi.org/10.1353/ajm.2011.0028
- R. C. Gunning, Some curves in abelian varieties, Invent. Math., 66(3)(1982), 377-389. https://doi.org/10.1007/BF01389218
- R. C. Gunning, Some identities for abelian integrals, Amer. J. Math., 108(1)(1986), 39-74. https://doi.org/10.2307/2374468
- J. Harris, On the Kodaira dimension of the moduli space of curves. II. The even genus case, Invent. Math., 75(3)(1984), 437-466. https://doi.org/10.1007/BF01388638
- J. Harris and K. Hulek, A remark on the Schottky locus in genus 4, Universita di Torino, Dipartimento di Matematica, Turin, 2004, 479-483.
- J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math., 67(1)(1982), 23-88. https://doi.org/10.1007/BF01393371
- K. Hulek and G. K. Sankaran, The geometry of Siegel modular varieties, Adv. Stud. Pure Math. 35, Mathematical Society of Japan, Tokyo, 2002, 89-156. https://doi.org/10.2969/aspm/03510089
- J. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann., 168(1967), 228-260. https://doi.org/10.1007/BF01361555
- J. Igusa, Theta Functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972, x+232 pp.
- J. Igusa, On the irreducibility of Schottky divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3)(1981), 531-545.
- P. Katsylo, Rationality of the moduli variety of curves of genus 3, Comment. Math. Helv., 71(4)(1996), 507-524. https://doi.org/10.1007/BF02566434
- G. Khan and J. Zhang, A hall of statistical mirrors, Asian J. Math., 26(6)(2022), 809-846. https://doi.org/10.4310/AJM.2022.v26.n6.a3
- B. Klingler and A. Yafaev, The Andre-Oort conjecture, Ann. of Math. (2), 180(3)(2014), 867-925. https://doi.org/10.4007/annals.2014.180.3.2
- J. Kollar and F. O. Schreyer, The moduli of curves is stably rational for g ≤ 6, Duke Math. J., 51(1)(1984), 239-242. https://doi.org/10.1215/S0012-7094-84-05113-5
- J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. Reine Angew. Math., 458(1995), 157-182.
- I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys, 32(1977), 185-213. https://doi.org/10.1070/RM1977v032n06ABEH003862
- I. M. Krichever, Characterizing Jacobians via trisecants of the Kummer variety, Ann. of Math. (2), 172(1)(2010), 485-516. https://doi.org/10.4007/annals.2010.172.485
- R. Lazarsfeld and M. Mustata, Convex bodies associated to linear system, Ann. Sci. Ec. Norm. Super. (4), 42(5)(2009), 783-835. https://doi.org/10.24033/asens.2109
- R. Lee and S. H. Weintraub, Cohomology of Sp4(ℤ) and related groups and spaces, Topology, 24(4)(1985), 391-410. https://doi.org/10.1016/0040-9383(85)90011-4
- K. Liu, X. Sun and S.-T. Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differntial Geom., 68(3)(2004), 571-637. https://doi.org/10.4310/jdg/1116508767
- K. Liu, X. Sun and S.-T. Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differntial Geom., 69(1)(2005), 163-216. https://doi.org/10.4310/jdg/1121540343
- K. Liu, X. Sun and S.-T. Yau, Good geometry on the curve moduli, Publ. Res. Inst. Math. Sci., 44(2)(2008), 699-724. https://doi.org/10.2977/prims/1210167341
- K. Liu, X. Sun and S.-T. Yau, Goodness of canonical metrics on the moduli space of Riemann surfaces, Pure Appl. Math. Q., 10(2)(2014), 223-243. https://doi.org/10.4310/PAMQ.2014.v10.n2.a2
- K. Liu, X. Sun, X. Yang and S.-T. Yau, Curvatures of moduli space of curves and applications, Asian J. Math., 21(5)(2017), 841-854. https://doi.org/10.4310/AJM.2017.v21.n5.a3
- H. Maass, Uber die Darstellung der Modulformen n-ten Grades durch Poincaresche Reihen, Math. Ann., 123(1951), 125-151. https://doi.org/10.1007/BF02054945
- H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann., 126(1953), 44-68. https://doi.org/10.1007/BF01343149
- H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-New York, 1971, v+328 pp.
- R. MacPherson and M. McConnell, Explicit reduction theory for Siegel modular threefolds, Invent. Math., 111(3)(1993), 575-625. https://doi.org/10.1007/BF01231300
- T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math., 32(1959), 1-19.
- M. Melo and F. Viviani, Comparing perfect and 2nd Voronoi decompositions: the matroidal locus, Math. Ann., 354(4)(2012), 1521-1554. https://doi.org/10.1007/s00208-011-0774-9
- B. Moonen, Linearity properties of Shimura varieties. I, J. Algebric Geom., 7(3)(1998), 539-567.
- S. Morel, Cohomologie d'intersection des varietes modulaires de Siegel, suite (French), Compos. Math., 147(6)(2011), 1671-1740. https://doi.org/10.1112/S0010437X11005409
- M. Mulase, Cohomological structure in soliton equations and Jacobian varieties, J. Differential Geom., 19(2)(1984), 403-430. https://doi.org/10.4310/jdg/1214438685
- D. Mumford, Hirzebruch's proportionality theorem in the non-compact case, Invent. Math., 42(1)(1977), 239-272. https://doi.org/10.1007/BF01389790
- D. Mumford, An algebro-geometric construction of commuting operators and of solution to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Kinokuniya Book Store Co., Ltd., Tokyo, 1978, pp. 115-153.
- D. Mumford, On the Kodaira dimension of the Siegel modular variety, Lecture Notes in Math. 997, Springer-Verlag, Berlin, 1983, 348-375.
- D. Mumford, Tata Lectures on Theta. I, Progr. Math. 28, Birkhauser Boston, Inc., Boston, MA, 1983, xiii+235 pp.
- D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), 34 [Results in Mathematics and Related Areas (2)] Springer-Verlag, Berlin, 1994, xiv+292 pp.
- Y. Namikawa, On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform, Nagoya Math. J., 52(1973), 197-259. https://doi.org/10.1017/S002776300001597X
- Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. I, Math. Ann., 221(2)(1976), 97-141. https://doi.org/10.1007/BF01433145
- Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. II, Math. Ann., 221(3)(1976), 201-241. https://doi.org/10.1007/BF01596390
- Y. Namikawa, Toroidal compactification of Siegel spaces, Lecture Notes in Math. 812, Springer, Berlin, 1980, viii+162 pp.
- A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math., 125(3)(1996), 405-411. https://doi.org/10.1007/s002220050081
- A. Okounkov, Why would multiplicities be log-concave?, in The orbit method in geometry and physics (Marseille, 2000), Progr. Math. 213, Birkhauser Boston, Inc., Boston, MA, 2003, 329-347.
- F. Oort, Canonical lifts and dense sets of CM points, Arithmetic Geometry, Cortona, 1994, 228-234, F. Catanese, editor, Symposia, Math., XXXVII, CUP (1997).
- Y. Peterzil and S. Starchenko, Uniform definability of the Weierstrass ℘ functions and generalized tori of dimension one, Selecta Math., 10(4)(2004), 525-550. https://doi.org/10.1007/s00029-005-0393-y
- Y. Peterzil and S. Starchenko, Definability of restricted theta functions and families of abelian varieties, Duke Math. J., 162(4)(2013), 731-765. https://doi.org/10.1215/00127094-2080018
- J. Pila, O-minimality and the Andre-Oort conjecture for ℂn, Ann. of Math. (2), 173(3)(2011), 1779-1840. https://doi.org/10.4007/annals.2011.173.3.11
- J. Pila, O-minimality and Diophantine geometry, Proceedings of the ICM, Kyung Moon Sa, Seoul, 2014, 547-572.
- J. Pila and J. Tsimerman, The Andre-Oort conjecture for the moduli space of abelian surfaces, Compos. Math., 149(2)(2013), 204-216. https://doi.org/10.1112/S0010437X12000589
- J. Pila and J. Tsimerman, Ax-Lindemann for 𝒜g, Ann. of Math. (2), 179(2)(2014), 659-681. https://doi.org/10.4007/annals.2014.179.2.5
- A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295(2)(1986), 565-592. https://doi.org/10.1090/S0002-9947-1986-0833697-X
- Z. Ran, On subvarieties of abelian varieties, Invent. Math., 62(3)(1981), 459-479. https://doi.org/10.1007/BF01394255
- Z. Ran, A characterization of five-dimensional Jacobian varieties, Invent. Math., 67(3)(1982), 395-422. https://doi.org/10.1007/BF01398929
- B. Riemann, Zur Theorie der Abel'schen Funktionen fur den p = 3, Math. Werke, Teubener, Leipzig, (1876), 456-476.
- B. Runge, Theta functions and Siegel-Jacobi functions, Acta Math., 175(2)(1995), 165-196. https://doi.org/10.1007/BF02393304
- R. Salvati Manni, Modular varieties with level 2 theta structure, Amer. J. Math., 116(6)(1994), 1489-1511. https://doi.org/10.2307/2375056
- G. K. Sankaran, Review on the article,"Theory of the Siegel modular variety" (authored by Jae-Hyun Yang), Zbl 1248.14049, Zentralblatt Math Database, European Math. Soc., FIZ Karlsruhe & Springer-Verlag (2013).
- I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc., 20(1956), 259-281.
- I. Satake, On the arithmetic of tube domains (blowing-up of the point at infinity), Bull. Amer. Math. Soc., 79(1973), 1076-1094. https://doi.org/10.1090/S0002-9904-1973-13342-7
- I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures 4, Iwanami Shoten, TokyoPrinceton University Press, Princeton, NJ, 1980, xvi+321 pp.
- F. Schottky, Zur Theorie der Abelschen Functionen von vier Variabeln, J. Reine Angew. Math., 102(1888), 304-352.
- F. Schottky and H. Jung, Neue Satze uber Symmetralfunctionen und die Abel'schen Functionen der Riemann'schen Theorie, Akad. Wiss. Berlin, Phys. Math. Kl., (1909), 282-297.
- E. Sernesi, Unirationality of the variety of moduli of curves of genus twelve (Italian), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(3)(1981), 405-439.
- N. I. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties, Invent. Math., 163(1)(2006), 25-45. https://doi.org/10.1007/s00222-005-0453-0
- T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83(2)(1986), 333-382. https://doi.org/10.1007/BF01388967
- C. L. Siegel, Symplectic Geometry, Amer. J. Math., 65(1943), 1-86; Academic Press, New York-London, 1964, Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359. https://doi.org/10.2307/2371774
- C. L. Siegel, Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables, Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience [A Division of John Wiley & Sons, Inc.], New York-London-Sydney, 1973, ix+244 pp.
- R. Smith and R. Varley, Deformation of isolated even double points of corank one, Proc. Amer. Math. Soc., 140(12)(2012), 4085-4096. https://doi.org/10.1090/S0002-9939-2012-11366-8
- Y.-S. Tai, On the Kodaira dimension of the moduli spaces of abelian varieties, Invent. Math., 68(3)(1982), 425-439. https://doi.org/10.1007/BF01389411
- J. A. Todd, Some types of rational quartic primal in four dimensions, Proc. London Math. Soc. (2), 42(4)(1936), 316-323. https://doi.org/10.1112/plms/s2-42.1.316
- S. Trapani, On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann., 293(4)(1992), 681-705. https://doi.org/10.1007/BF01444740
- E. Ullmo and A. Yafaev, Galois orbits and equidistribution of special subvarieties: towards the Andre-Oort conjecture, Ann. of Math. (2), 180(3)(2014), 823-865. https://doi.org/10.4007/annals.2014.180.3.1
- W. Wang, On the Smooth Compactification of Siegel Spaces, J. Differential Geom., 38(2)(1993), 351-386. https://doi.org/10.4310/jdg/1214454298
- W. Wang, On the moduli space of principally polarized abelian varieties, Contemp. Math. 150, American Mathematical Society, Providence, RI, 1993, 361-365. https://doi.org/10.1090/conm/150/01299
- H. Weber, Theorie der Abel'schen Funktionen vom Geschlecht 3, Berlin: Druck und Verlag von Georg Reimer, 1876.
- R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math., 343(1983), 184-202.
- R. Weissauer, Untervarietaten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ, Math. Ann., 275(2)(1986), 207-220. https://doi.org/10.1007/BF01458458
- R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. Reine Angew. Math., 391(1988), 100-156.
- G. E. Welters, The surface C -C on Jacobi varieties and 2nd order theta functions, Acta Math., 157(1986), 1-22. https://doi.org/10.1007/BF02392589
- S. A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math., 85(1)(1986), 119-145. https://doi.org/10.1007/BF01388794
- S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom., 31(2)(1990), 417-472. https://doi.org/10.4310/jdg/1214444322
- J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups, Nagoya Math. J., 123(1991), 103-117. https://doi.org/10.1017/S0027763000003676
- J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences (1993), 33-58.
- J.-H. Yang, Stable Jacobi forms, Proc. of Workshops in Pure Mathematics on Number Theory and Algebra, the Korean Academic Council 13, Part I, (1993), 31-51.
- J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg, 63(1993), 135-146. https://doi.org/10.1007/BF02941338
- J.-H. Yang, Vanishing theorems on Jacobi forms of higher degree, J. Korean Math. Soc., 30(1)(1993), 185-198.
- J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups. II, J. Number Theory, 49(1)(1994), 63-72. https://doi.org/10.1006/jnth.1994.1080
- J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math., 47(6)(1995), 1329-1339. https://doi.org/10.4153/CJM-1995-068-2
- J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc., 347(6)(1995), 2041-2049. https://doi.org/10.1090/S0002-9947-1995-1290733-2
- J.-H. Yang, A decomposition theorem on differential polynomials of theta functions of high level, Japan. J. Math., 22(1)(1996), 37-49. https://doi.org/10.4099/math1924.22.37
- J.-H. Yang, Kac-Moody Algebras, the Monstrous Moonshine, Jacobi Forms and Infinite Products, Proceedings of the 1995 Symposium on Number Theory, Geometry and Related Topics, edited by Jin-Woo Son and Jae-Hyun Yang, the Pyungsan Institute for Mathematical Sciences (May 1996), 13-82.
- J.-H. Yang, On Theta Functions, Kyungpook Math. J., 35(3)(1996), 857-875.
- J.-H. Yang, Fock Representations of the Heisenberg Group H(g,h)ℝ, J. Korean Math. Soc., 34(2)(1997), 345-370.
- J.-H. Yang, Stable Automorphic Forms, Proceedings of Japan-Korea Joint Seminar on Transcendental Number Theory and Related Topics, Masan, Korea (1998), 101-126.
- J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J., 40(2)(2000), 209-237.
- J.-H. Yang, Lattice Representations of the Heisenberg Groups, Math. Ann., 317(2)(2000), 309-323. https://doi.org/10.1007/s002080000097
- J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J., 42(2)(2002), 199-272.
- J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math., 32(3)(2006), 701-712.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory, 127(1)(2007), 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
- J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc., 45(3)(2008), 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
- J.-H. Yang, Theory of the Siegel modular variety, Number Theory and Applications: Proceedings of the International Conferences on Number Theory and Cryptography, edited by S. D. Adhikari and B. Ramakrishnan, Hindustan Book Agency, New Delhi, India, (2009), 219-278.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. Ser. B, 31(1)(2010), 85-100. https://doi.org/10.1007/s11401-008-0348-7
- J.-H. Yang, Heisenberg Groups, Theta Functions and the Weil Representation, KM Kyung Moon Sa, Seoul, 2012, 155 pp.
- J.-H. Yang, A Note on Maass-Jacobi Forms II, Kyungpook Math. J., 53(1)(2013), 49-86. https://doi.org/10.5666/KMJ.2013.53.1.49
- J.-H. Yang, Invariant differential operators on the Minkowski-Euclid space, J. Korean Math. Soc., 50(2)(2013), 275-306. https://doi.org/10.4134/JKMS.2013.50.2.275
- J.-H. Yang, Covariant maps for the Schrodinger-Weil representation, Bull. Korean Math. Soc., 52(2)(2015), 627-647. https://doi.org/10.4134/BKMS.2015.52.2.627
- J.-H. Yang, Geometry and Arithmetic on the Siegel-Jacobi Space, Geometry and Analysis on Manifolds: In Memory of Professor Shoshichi Kobayashi (edited by T. Ochiai, A. Weinstein et al), Progress in Mathematics 308, Birkhauser, Springer International Publishing AG Switzerland (2015), 275-325.
- J.-H. Yang, Polarized real tori, J. Korean Math. Soc., 52(2)(2015), 269-331. https://doi.org/10.4134/JKMS.2015.52.2.269
- J.-H. Yang, Theta sums of higher index, Bull. Korean Math. Soc., 53(6)(2016), 1893-1908. https://doi.org/10.4134/BKMS.b160009
- J.-H. Yang, Stable Schottky-Jacobi forms, arXiv:1702.08650 [math.NT].
- J. Yang and L. Yin, Differential operators for Siegel-Jacobi forms, Sci. China Math., 59(6)(2016), 1029-1050. https://doi.org/10.1007/s11425-015-5111-4
- J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin and G.-H. Min, Sectional Curvatures of the Siegel-Jacobi Space, Bull. Korean Math. Soc., 50(3)(2013), 787-799. https://doi.org/10.4134/BKMS.2013.50.3.787
- S.-T. Yau and Y. Zhang, The geometry on smooth toroidal compactifications of Siegel varieties, Amer. J. Math., 136(4)(2014), 859-941. https://doi.org/10.1353/ajm.2014.0024
- J. Zhang and G. Khan, Statistical mirror symmetry, Differential Geom. Appl. 73 (2020), 101678, 32 pp.
- C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Univ. Hamburg, 59(1989), 191-224. https://doi.org/10.1007/BF02942329