DOI QR코드

DOI QR Code

Protective effect of Oxya chinensis sinuosa methanol extract on UVB-induced damage in human retinal pigment epithelial cells

  • Hyun Jung Lim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sohyun Park (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Joon Ha Lee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • In-Woo Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • HaeYong Kweon (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Minchul Seo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2023.10.04
  • Accepted : 2023.11.16
  • Published : 2023.12.31

Abstract

The human eye, constantly exposed to solar radiation, can be damaged by UV radiation. In particular, ultraviolet B (UVB)-induced damage plays an important role in retinal degeneration and cell aging. In this study, we investigated the protective effects of the methanol extract of Oxya chinensis sinuosa (OCM), an edible insect known for its high protein content (64.2%), and various pharmacological effects, on human retinal pigment epithelial cells. ARPE-19 cells were treated with OCM and subsequently UVB irradiated. Our results showed that OCM effectively attenuates UVB-induced cell damage by reducing MAPK phosphorylation (JNK and p38 MAPK). Additionally, OCM increased the phosphorylation of Akt, and cell cycle regulators, including p21 and p27, in a dose-dependent manner. Moreover, OCM treatment increased ARPE-19 cell proliferation by activating the S6K1/S6 pathway. This study suggests that OCM prevents UVB-induced retinal cell damage by increasing cell proliferation via ROS reduction, suggesting its potential as a functional therapeutic superfood against retinal cell damage.

Keywords

Acknowledgement

This work was supported by Rural Development Administration, Republic of Korea (Project no. PJ01563201)

References

  1. Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10, e19. https://doi.org/10.1017/S1462399408000744 
  2. Biesemeier A, KokkinouD, Julien S (2008) UV-A induced oxidative stress is more prominent in naturally pigmented aged human RPE cells compared to non-pigmented human RPE cells independent of zinc treatment. J Photochem Photobiol B: Biol 90, 113-120. https://doi.org/10.1016/j.jphotobiol.2007.11.005 
  3. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613 
  4. Bode AM, Dong Z (2003) Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE 28, RE2. https://doi.org/10.1126/stke.2003.167.re2 
  5. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441-446. https://doi.org/10.1038/377441a0 
  6. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95, 1432-1437. https://doi.org/10.1073/pnas.95.4.1432 
  7. Cao G, Chen M, Song Q, Liu Y, Xie L, Han Y, et al. (2012) EGCG protects against UVB-induced apoptosis via oxidative stress and the JNK1/c-Jun pathway in ARPE19 cells. Mol Med Rep 5, 54-59. https://doi.org/10.3892/mmr.2011.582 
  8. Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16, 34-44. https://doi.org/10.2174/138161210789941865 
  9. Carr TD, DiGiovanni J, Lynch CJ, Shantz LM (2012) Inhibition of mammalian target of rapamycin (mTOR) suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5, 1394-1404. https://doi.org/10.1158/1940-6207.CAPR-12-0272-T 
  10. Chung KS, Kim BN (2014) A flow cytometrical analysis of the antitumor and immunostimulatory effects of LCT-CT, a cold-water extract prepared from rice grasshopper Oxya japonica japonica Thunberg. Yakhak Hoeji 58, 151-157. 
  11. Costantini L, Molinari R, Farinon B, Merendino N (2017) Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 18, 2645. https://doi.org/10.3390/ijms18122645 
  12. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002 
  13. Fernandes SA, Demetriades C (2021) The multifaceted role of nutrient sensing and MTORC1 signaling in physiology and aging. Front Aging 2, 38. https://doi.org/10.3389/fragi.2021.707372. eCollection 2021 
  14. Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M (2021) Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J Investig Dermatol 141, 1119-1126. https://doi.org/10.1016/j.jid.2020.09.031 
  15. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13, 140-156. https://doi.org/10.1038/nrd4204 
  16. Godar DE, Thomas DP, Miller SA, Lee W (1993) Long-wavelength UVA radiation induces oxidative stress, cytoskeletal damage and hemolysis. Photochem Photobiol 57, 1018-1026. https://doi.org/10.1111/j.1751-1097.1993.tb02965.x 
  17. Hao XN, Wang WJ, Chen J, Zhou Q, Qu YX, Liu XY, et al. (2016) Effects of resveratrol on ARPE-19 cell proliferation and migration via regulating the expression of proliferating cell nuclear antigen, P21, P27 and p38MAPK/MMP-9. Int J Ophthalmol 9, 1725-1731. https://doi.org/10.18240/ijo.2016.12.04. eCollection 2016 
  18. Hseu YC, Chen SC, Chen HC, Liao JW, Yang HL (2008) Antrodia camphorate inhibits proliferation of human breast cancer cells in vitro and in vivo. Food Chem Toxicol 46, 2680-2688. https://doi.org/10.1016/j.fct.2008.04.036 
  19. Hsieh FC, Hung CT, Cheng KC, Wu CY, Chen YC, Wu YJ, et al. (2018) Protective effects of Lycium barbarum extracts on UVB-induced damage in human retinal pigment epithelial cells accompanied by attenuating ROS and DNA damage. Oxid Med Cell Longev 2018, 4814928. https://doi.org/10.1155/2018/4814928. eCollection 2018 
  20. Im AR, Park I, Ji KY, Lee JY, Kim KM, Na M, et al. (2019) Protective effects of Oxya chinensis sinuosa Mishchenko against untraviolet B-induced photodamage in hairless mice. BMC Complement Altern Med 19, 286. https://doi.org/10.1186/s12906-019-2692-4 
  21. Kadenbach B, Ramzan R, Vogt S (2009) Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 15, 139-147. https://doi.org/10.1016/j.molmed.2009.02.004 
  22. Kaunppinen A, Niskanen H, Suuronen Y, Salminen A, Kaarniranta K (2012) Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-implications for age-related macular degeneration (AMD). Immunol Lett 147, 29-33. https://doi.org/10.1016/j.imlet.2012.05.005 
  23. Kim AY, Kim KY, Choi HJ, Park HW, Koh YH (2022a) Current status of sericulture and insect industry to respond to human survival crisis. Korean J Appl Entomol 61, 605-614. https://doi.org/10.5656/KSAE.2022.10.0.048 
  24. Kim BS, Choi RY, Ban EJ, Lee JH, Kim IW, Seo M (2022b) Antioxidative effects of Tenebrio molitor Larvae extract against oxidative stress in ARPE-19 cells. J Life Sci 32, 865-871. https://doi.org/10.5352/JLS.2022.32.11.865 
  25. Kim HJ, Kang SJ, Kim SG, Kim JE, Koo HY (2015) Antioxidant activity and antimicrobial activity of the grasshopper, Oxya chinensis sinuosa. J Seric Entomol Sci 53, 130-134. https://doi.org/10.4014/jmb.1608.08029 
  26. Kim HR, Kim S, Kim SJ, Jeong SI, Kim SY (2020) Rhynchosia volubilis Lour. and Beta vulgaris modulate extracts regulate UV-induced retinal pigment epithelial cell and eye damage in mice. Kor J Pharmacogn 51, 131-138. https://doi.org/10.22889/KJP.2020.51.2.131 
  27. Kim IW, Markkandan K, Lee JH, Subramaniyam S, Yoo S, Park J, et al. (2016) Transcriptome profiling and in Silico analysis of the antimicrobial peptides of the grasshopper Oxya chinensis sinuosa. J Microbiol Biotechnol 26, 1863-1870. https://doi.org/10.4014/jmb.1608.08029 
  28. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, et al. (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721-732. https://doi.org/10.1016/s0092-8674(00)81238-6 
  29. Klopfleisch R, Gruber AD (2009) Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands. Res Vet Sci 87, 91-96. https://doi.org/10.1016/j.rvsc.2008.12.010 
  30. Koskela A, Reinisalo M, Petrovski G, Sinha D, Olmiere C, Karjalainen R, et al. (2016) Nutraceutical with resveratrol and omega-3 fatty acids induces autophagy in ARPE-19 cells. Nutrients 8, 284. https://doi.org/10.3390/nu8050284 
  31. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122, 3589-3594. https://doi.org/10.1242/jcs.051011 
  32. Lee KS, Lee MG, Woo YJ, Nam KS (2019) The preventive effect of deep sea water on the development of cancerous skin cells through the induction of autophagic cell death in UVB-damaged HaCaT keratinocyte. Biomed Pharmacother 111, 282-291.https://doi.org/10.1016/j.biopha.2018.12.083 
  33. Lee JH, Jo Y, Kim SW, Kweon HY (2021) Analysis of nutrient composition of silkworm pupae in Baegokjam, Goldensilk, Juhwangjam, and YeonNokjam varieties. Int J Indust Entomol 43, 85-93. https://doi.org/10.7852/ijie.2021.43.2.85 
  34. Lei X, Liu B, Han W, Ming M, He YY (2010) UVB-induced p21 degradation promotes apoptosis of human keratinocytes. Photochem Photobiol Sci 9, 1640-1648. https://doi.org/10.1039/c0pp00244e 
  35. Li T, Dai W, Lu L (2002) Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. J Biol Chem 277, 32668-32676. https://doi.org/10.1074/jbc.M203519200 
  36. Liu H, Liu W, Zhou X, Long C, Kuang X, Hu J, et al. (2017) Protective effect of lutein on ARPE-19 cells upon H2O2-induced G2/M arrest. Mol Med Rep 16, 2069-2074. https://doi.org/10.3892/mmr.2017.6838
  37. Marie M, Bigot K, Angebault C, Barrau C, Gondouin P, Pagan D, et al. (2018) Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis 9, 287-299. https://doi.org/10.1038/s41419-018-0331-5 
  38. Nilsson SEG, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106, 13-16. https://doi.org/10.1023/a:1022419606629 
  39. Nowakowsk AC, Miller AC, Miller ME, Xiao H, Wu X (2022) Potential health benefits of edible insects. Crit Rev Food Sci Nutr 62, 3499-3508. https://doi.org/10.1080/10408398.2020.1867053 
  40. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd 
  41. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguch S, et al. (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282, 20329-20339. https://doi.org/10.1074/jbc.M702636200 
  42. Park JY, Heo JC, Woo SU, Yun CY, Kang SW (2006) Anti-inflammatory and cellular protective effects on hydrogen peroxide-induced cytotoxicity of grasshopper extracts. Korean J Food Preserv 13, 796-802. 
  43. Roduit R, Schorderet DF (2008) MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis 13, 343-353. https://doi.org/10.1007/s10495-008-0179-8 
  44. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer cell 2, 103-112. https://doi.org/10.1016/s1535-6108(02)00102-2 
  45. Silvan JM, Reguero M, de Pascual-Teresa S (2016) A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food & Feunct 7, 1067-1076. https://doi.org/10.1039/c5fo01368b 
  46. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. IOVS 41, 1981-1989. 
  47. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85, 845-881. https://doi.org/10.1152/physrev.00021.2004 
  48. Strimpakos AS, Karapanagiotou EM, Saif MW, Syrigos KN (2009) The role of mTOR in the management of solid tumors: an overview. Cancer Treat Rev 35, 148-159. https://doi.org/10.1016/j.ctrv.2008.09.006 
  49. Stull VJ, Finer E, Bergmans RS, Febvre HP, Longhurst C, Manter DK, et al. (2018) Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci Rep 8, 10762. https://doi.org/10.1038/s41598-018-29032-2 
  50. Stull VJ, Weir TL (2023) Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. Nat Food 4, 283-287. https://doi.org/10.1038/s43016-023-00728-7 
  51. Viglietto G, Motti ML, Fusco A (2002) Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. Cell Cycle 1, 394-400. https://doi.org/10.4161/cc.1.6.263 
  52. Wang Y, Fung NSK, Lam WC, Lo ACY (2022) mTOR signaling pathway: a potential therapeutic target for ocular neurodegenerative diseases. Antioxidant (Basel) 11, 1304. 
  53. Whang HJ, Han WS, Yoon KR (2001) Quantitative analysis of total phenolic content in apple. Anlytical Sci Technol 14, 377-383. 
  54. Xu JY, Wu LY, Zheng XQ, Lu JL, Wu MY, Liang YR (2010) Green tea polyphenols attenuating ultraviolet B-induced damage to human retinal pigment epithelial cells in vitro. Invest Opthamol Vis Sci 51, 6665-6670. https://doi.org/10.1167/iovs.10-5698 
  55. Yoon YI, Chung MY, Hwang JS, Coo TW, Ahn MY, Lee YB, et al. (2014) Anti-inflammatory effect of Oxya chinensis sinuosa ethanol extract in LPS-induced RAW 264.7 cells. J Life Sci 24, 370-376.  https://doi.org/10.5352/JLS.2014.24.4.370
  56. Zwang Y, Yarden Y (2006) p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J 25, 4195-4206. https://doi.org/10/1038/sj.emboj.7601297 10/1038/sj.emboj.7601297