DOI QR코드

DOI QR Code

Life assessment of monitoring piezoelectric sensor under high temperature at high-level nuclear waste repository

고준위방사성폐기물 처분장 고온 환경 조건에 대한 모니터링용 피에조 센서의 수명 평가

  • Changhee Park (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Hyun-Joong Hwang (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Chang-Ho Hong (Disposal Performance Demonstration R&D Division, KAERI) ;
  • Jin-Seop Kim (Disposal Performance Demonstration R&D Division, KAERI) ;
  • Gye-Chun Cho (Dept. of Civil and Environmental Engineering, KAIST)
  • 박창희 (한국과학기술원 건설및환경공학과) ;
  • 황현중 (한국과학기술원 건설및환경공학과) ;
  • 홍창호 (한국원자력연구원 저장처분성능검증부) ;
  • 김진섭 (한국원자력연구원 저장처분성능검증부) ;
  • 조계춘 (한국과학기술원 건설및환경공학과)
  • Received : 2023.10.26
  • Accepted : 2023.11.20
  • Published : 2023.11.30

Abstract

The high-level nuclear waste (HLW) repository is exposed to complex environmental conditions consisting of high temperature, high humidity, and radiation, resulting in structural deterioration. Therefore, structural health monitoring is essential, and piezo sensors are used to detect cracks and estimate strength. However, since the monitoring sensors installed in the disposal tunnel and disposal container cannot be replaced or removed, the quantitative life of the monitoring sensor and its suitability must be assessed. In this study, the life of a piezo sensor for monitoring was assessed using an accelerated life test (ALT). The failure mode and mechanism of the piezo sensor under high temperature conditions were determined, and temperature stress's influence on the piezo sensor's life was analyzed. ALT was conducted on temperature stress and the relationship between temperature stress and piezo sensor life was suggested. The life of the piezo sensor was assessed using the Weibull probability distribution and the Arrhenius acceleration model. The suggested relationship can be used in multiple stress ALT designs for more precise life assessment.

고준위방사성폐기물 처분장은 고온, 다습, 방사선의 복합적인 환경 조건에 노출되며 이로 인해 구조물의 열화가 가속된다. 따라서 처분장에 대한 구조물 건전성 모니터링이 필수적이며 균열 탐지, 강도 추정 등을 위해 피에조 센서가 활용된다. 다만 처분 터널 및 처분 용기에 설치되는 모니터링 센서는 교체 및 제거가 불가능하기 때문에 모니터링 센서의 정량적인 수명을 평가하고 적합성을 판단해야 한다. 본 연구에서는 가속수명시험을 활용하여 모니터링용 피에조 센서에 대한 수명을 평가하였다. 고온 조건에서 나타나는 피에조 센서의 고장 모드와 고장 메커니즘을 도출하였으며 온도 스트레스가 피에조 센서 수명에 미치는 영향을 분석하였다. 또한 온도 스트레스에 대한 가속수명시험을 수행하여 와이블 수명 확률 분포 및 아레니우스 가속모형을 통해 온도 스트레스와 피에조 센서 수명 간의 관계식을 제시하고 수명을 평가하였다. 본 연구에서 제시된 온도 스트레스와 수명 간의 관계를 통해 보다 정확한 수명 평가를 위한 복합스트레스 가속수명시험 설계에 도움이 될 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 연구되었습니다(NRF-2022M2E3A3015608). 첫 번째 저자는 국토교통부의 스마트시티혁신인재육성사업으로 지원되었습니다. 그리고 이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구사업입니다(2021M2E1A1085193).

References

  1. Choi, J.W., Choi, H.J., Lee, J.Y., Chun, K.S. (2006), High-level radwaste disposal technology development, KAERI/RR-2765/2006, Korea Atomic Energy Research Institute, pp. 276-289.
  2. Escobar, L.A., Meeker, W.Q. (1995), "Planning accelerated life tests with two or more experimental factors", Technometrics, Vol. 37, No. 4, pp. 411-427. https://doi.org/10.1080/00401706.1995.10484374
  3. Evans, M. (2009), Minitab manual, W.H. Freeman, New York, NY, pp. 129-150.
  4. Field, K.G., Remec, I., Le Pape, Y. (2015), "Radiation effects in concrete for nuclear power plants - Part I: Quantification of radiation exposure and radiation effects", Nuclear Engineering and Design, Vol. 282, pp. 126-143. https://doi.org/10.1016/j.nucengdes.2014.10.003
  5. Hwang, H.J., Park, C., Hong, C.H., Kim, J.S., Cho, G.C. (2022), "Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 6, pp. 451-464.
  6. Jung, Y.M., Joo, W.J., Jeong, S.K. (2012), "Investigation into the worst stress condition for an accelerated life test of a compressor in refrigerators-acceleration factor and the reducible test time under high temperature", Journal of Power System Engineering, Vol. 16, No. 3, pp. 44-50. https://doi.org/10.9726/kspse.2012.16.3.044
  7. Kim, H.M., Wi, S.H., Lee, H.B. (2011), "Life assessment of tire pressure sensor with accelerated life test", Proceedings of the Korean Reliability Society Conference, Gyeongsan, pp. 41-48.
  8. Kim, J.J. (2009), "Accelerated life test and example", Journal of Korean Society of Mechanical Engineers, Vol. 49, No. 12, pp. 60-64.
  9. Kim, J.S., Cho, W.J., Park, S., Kim, G.Y., Baik, M.H. (2019), "A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer", Journal of Korean Tunnelling and Underground Space Association, 21, No. 5, 587-609.
  10. Kim, S.H., Yeom, J., Baek, I.S., Kim, J.S., Sung, S.I. (2020), "Determining the statistical sample size for reliability testing", Journal of Applied Reliability, Vol. 20, No. 1, pp. 84-93. https://doi.org/10.33162/JAR.2020.3.20.1.84
  11. Kontani, O., Ichikawa, Y., Ishizawa, A., Takizawa, M., Sato, O. (2014), "Irradiation effects on concrete structures", Infrastructure Systems for Nuclear Energy, pp. 459-473.
  12. Lee, K.H., Yun, W.Y. (2009), "Accelerated life test design for vacuum cleaner motors", Journal of Applied Reliability, Vol. 9, No. 1, pp. 47-58.
  13. Lim, S.Y., Jang, I.H., Lee, Y.J., Lim, H.W. (2015), "Improvement through failure modes and failure mechanisms of piezoelectric sensors using the AVC", Journal of Advanced Engineering and Technology, Vol. 8, No. 2, pp. 135-140. https://doi.org/10.35272/jaet.2015.8.2.135
  14. Ma, Q., Guo, R., Zhao, Z., Lin, Z., He, K. (2015), "Mechanical properties of concrete at high temperature - A review", Construction and Building Materials, Vol. 93, pp. 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131
  15. Min, K.C., Yun, Y.G., Kim, M.S. (2011), "An accelerated life test of LED lights for aviation taxiway", Journal of Applied Reliability, Vol. 11, No. 2, pp. 127-140.
  16. Nelson, W.B. (2009), Accelerated testing: statistical models, test plans, and data analysis, John Wiley & Sons, Hoboken, New Jersey, pp. 22-42.
  17. Sall, J., Lehman, A., Stephens, M., Loring, S. (2017), JMP start statistics: a guide to statistics and data analysis using JMP, SAS Institute, Cary, North Carolina, pp. 281-301.
  18. Seo, S.K., Yum, B.J. (1991), "Accelerated life test plans under intermittent inspection and type-I censoring: The case of weibull failure distribution", Naval Research Logistics (NRL), Vol. 38, No. 1, pp. 1-22. https://doi.org/10.1002/1520-6750(199102)38:1<1::AID-NAV3220380103>3.0.CO;2-3
  19. Trevisanello, L., Meneghini, M., Mura, G., Vanzi, M., Pavesi, M., Meneghesso, G., Zanoni, E. (2008), "Accelerated life test of high brightness light emitting diodes", IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 2, pp. 304-311. https://doi.org/10.1109/TDMR.2008.919596
  20. Wlodkowski, P.A. (1999), Physics of failure modes in accelerometers utilizing single crystal piezoelectric materials, Doctoral Dissertation, University of Maryland, College Park, pp. 64-125.
  21. Woo, J.T. (2018), "A study on the regulation of durability standard of underground structures monitoring sensors", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 1, pp. 73-81.  https://doi.org/10.9711/KTAJ.2018.20.1.073