DOI QR코드

DOI QR Code

Numerical approach to elucidate the behavior of seismic lining adopting hyperelastic material model

수치해석을 이용한 초탄성 재료 기반 면진라이닝의 거동 규명

  • Sung Kwon Ahn (Advanced Rail & Civil Division, Korea Railroad Research Institute) ;
  • Hee Up Lee (Advanced Rail & Civil Division, Korea Railroad Research Institute) ;
  • Jeongjun Park (Advanced Rail & Civil Division, Korea Railroad Research Institute) ;
  • Jiwon Lee (Advanced Rail & Civil Division, Korea Railroad Research Institute)
  • 안성권 (한국철도기술연구원 첨단궤도토목본부) ;
  • 이희업 (한국철도기술연구원 첨단궤도토목본부) ;
  • 박정준 (한국철도기술연구원 첨단궤도토목본부) ;
  • 이지원 (한국철도기술연구원 첨단궤도토목본부)
  • Received : 2023.10.23
  • Accepted : 2023.11.08
  • Published : 2023.11.30

Abstract

Considering the continuing discussion about the Korea-Japan undersea tunnel, it is necessary to conduct a scientific investigation into tunnel deformation associated with large ground movements at fault. This paper presents findings obtained from numerical experiments to investigate a seismic lining that adopts rubber-like material. We utilized the user material subroutine to obtain the deformation gradient of the hyperelastic material. Additionally, polar decomposition is used to analyze the results, where the data is displayed on a series of two-dimensional planes using the principal direction, which facilitates a better insight into the deformation. Tunnel engineers could refer to this paper for the procedure to investigate the deformation of hyperelastic material.

지속해서 논의 중인 한일 해저터널 건설과 관련해 단층대에서 일어날 것으로 예상되는 대규모 지반 변위에 따른 터널의 변형에 대한 연구가 필요하다. 이 연구는 고무 재료 기반 면진라이닝에 관한 수치해석 결과를 제시한다. 변형 구배를 산정하기 위해 사용자정의 서브루틴을 이용했다. 또한 극 분해를 통해 데이터를 분석하였으며, 주 신축 방향으로 정렬된 여러 평면 좌표계를 이용해 데이터를 도시하여 재료 변형에 대한 심층적인 이해를 얻을 수 있었다. 터널 기술자는 초탄성 재료의 변형 관련 연구에 이 연구를 참고할 수 있다.

Keywords

Acknowledgement

이 연구는 한국철도기술연구원 기본사업(대륙간 연결을 위한 해저철도 핵심기술 개발, PK2304A2)의 연구비 지원으로 수행되었습니다.

References

  1. Abeyaratne, R. (1988), Lecture Notes on the Mechanics of Elastic Solids - Volume 2. Continuum mechanics (version 1.0), Massachusetts Institute of Technology, pp. 32-36.
  2. Bomben, G. (2017), Anti-seismic joint for joining concrete quoins, International Publication No. WO 20 17/203390 A1, World Intellectual Property Organization, pp. 1-22.
  3. Dassault Systemes (2006), Abaqus theory manual (version 6.6), https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/stm/default.htm?startat=ch04s06ath123.html (October 5, 2023).
  4. Kim, H.G., Song, C.W., Kim, J.S., Son, M., Kim, I.S. (2008), "Tertiary geological structures and deformation history of the Southern Tsushima Island, Japan", Journal of the Geological Society of Korea, Vol. 44, No. 2, pp. 175-198.
  5. Kossa, A., Valentine, M.T., McMeeking, R.M. (2023), Analysis of the compressible, isotropic, neo-Hookean hyperelastic model, Meccanica, Vol. 58, pp. 217-232. https://doi.org/10.1007/s11012-022-01633-2
  6. Li, S., Beyerlein, I.J., Necker, C.T., Alexander, D.J., Bourke, M. (2004), "Heterogeneity of deformation texture in equal channel angular extrusion of copper", Acta Materialia, Vol. 52, No. 16, pp. 4859-4875. https://doi.org/10.1016/j.actamat.2004.06.042
  7. Lunardi, P., Cassani, G., Canzoneri, A., Carriero, F., Bomben, G. (2017), "Passage of a precast segmental lining tunnel through an active fault - Special segments and details - Thessaloniki metro", Proceedings of the World Tunnel Congress, Bergen, Norway, pp. 1-10.
  8. MOLIT (2018), 'Extra-long span (min. 50km)' and 'High water pressure (min. 20bar)' subsea tunnel, Final Report, R&D/18SCIP-B066321-06, Ministry of Land, Infrastructure and Transport, pp. 101-131.
  9. Sun, W., Chaikof, E.L., Levenston, M.E. (2008), "Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models", Journal of Biomechanical Engineering, Vol. 130, No. 6, 061003.
  10. The Dong-a Ilbo (2010), The economic benefits of the Korea-Japan underwater tunnel exceeds 70 trillion won, https://www.donga.com/news/Society/article/all/20101015/31883284/1 (October 5, 2023).
  11. Wood, L.A., Martin, G.M. (1964), "Compressibility of Natural Rubber at Pressures Below 500 kg/cm2", Journal of Research of the National Bureau of Standards, Section A: Physics and Chemistry, Vol. 68A, No. 3, pp. 259-268.  https://doi.org/10.6028/jres.068A.022