DOI QR코드

DOI QR Code

Coherent Optical Receiver for Real-time CO-ORMDM Systems

  • Jae Seung, Lee (Department of Electronic Engineering, Kwangwoon University)
  • Received : 2022.08.19
  • Accepted : 2022.11.29
  • Published : 2023.02.25

Abstract

We propose a new coherent optical receiver (COR) to detect optical receiver mode (ORM) subchannels selectively in coherent optical (CO) ORM division multiplexing (ORMDM) systems. In the CO-ORMDM systems, each optical channel is a linear sum of ORM subchannels, to obtain high spectral efficiencies (SEs). The COR uses an ORM subcarrier as its local oscillator (LO) and reads the transmitted data at the origin times of ORM signals. For example, if the mth ORM subcarrier is used as the LO, then the COR reads the data of the mth ORM subchannel. The proposed COR is fast and can make CO-ORMDM systems useful for real-time optical communication with high SE.

Keywords

Acknowledgement

The work reported in this paper was conducted during the sabbatical year of Kwangwoon University in 2019.

References

  1. W. Klaus, P. J. Winzer, and K. Nakajima, "The role of parallelism in the evolution of optical fiber communication systems," Proc. IEEE 110, 1619-1654 (2022). https://doi.org/10.1109/JPROC.2022.3207920
  2. B. J. Puttnam, R. S. Luis, G. Rademacher, M. Mendez-Astudillio, Y. Awaji, and H. Furukawa, "S, C- and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification," Opt. Express 39, 10011-10018 (2022). https://doi.org/10.1364/OE.448837
  3. K. Kikuchi, "Fundamentals of coherent optical fiber communications," J. Light. Technol. 34, 157-179 (2016). https://doi.org/10.1109/JLT.2015.2463719
  4. P. J. Winzer, "High-spectral-efficiency optical modulation formats," J. Light. Technol. 30, 3824-3835 (2012). https://doi.org/10.1109/JLT.2012.2212180
  5. I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006). https://doi.org/10.1364/OE.14.003767
  6. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, "101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based Phase noise mitigation," in Optical Fiber Communication Conf. Technical Digest 2011 (Optical Society of America, 2011), Paper PDPB5.
  7. T. Omiya, M. Yoshida, and M. Nakazawa, "400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE," Opt. Express 21, 2632-2641 (2013). https://doi.org/10.1364/OE.21.002632
  8. J. S. Lee, "Optical signals using superposition of optical receiver modes," Curr. Opt. Photonics 1, 308-314 (2017). https://doi.org/10.3807/COPP.2017.1.4.308
  9. B. Batsuren, K. H. Seo, and J. S. Lee, "Optical communication using linear sums of optical receiver modes: proof of concept," IEEE Photonics Technol. Lett. 30, 1707-1710 (2018). https://doi.org/10.1109/LPT.2018.2866513
  10. J. S. Lee and C. S. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain," J. Light. Technol. 12, 1224-1229 (1994). https://doi.org/10.1109/50.301815
  11. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering," J. Light. Technol. 18, 1493-1503 (2000). https://doi.org/10.1109/50.896209
  12. R. Holzlohner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, "Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization," J. Light. Technol. 20, 389-400 (2002). https://doi.org/10.1109/50.988987
  13. J. S. Lee and A. E. Willner, "Analysis of Gaussian optical receivers," J. Light. Technol. 31, 2687-2693 (2013). https://doi.org/10.1109/JLT.2013.2272333
  14. A. Li, W. Shieh, and R. Tucker, "Wavelet packet transform-based OFDM for optical communications," J. Light. Technol. 28, 3519-3528 (2010). https://doi.org/10.1109/JLT.2010.2089673
  15. A. Guner and A. Ozen, "Lifting wavelet transform based multicarrier modulation scheme for coherent optical communication systems," J. Light. Technol. 39, 4255-4261 (2021). https://doi.org/10.1109/JLT.2021.3070957
  16. E. Wong, "Next-generation broadband access networks and technologies," J. Light. Technol. 30, 597-608 (2012). https://doi.org/10.1109/JLT.2011.2177960
  17. K. Nara, N. Matsubara, and H. Kawashima, "Monolithically integrated 1×32 optical splitter/router using low loss ripple MZI-based WDM filter and low loss Y-branch circuit," in Optical Fiber Communication Conference 2006 (Optical Society of America, 2006), paper OWO1.
  18. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Worhoff, and M. Pollnau, "Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth," IEEE Photonics Technol. Lett. 22, 278-280 (2010). https://doi.org/10.1109/LPT.2009.2037927
  19. S. Y. Kim, K. H. Seo, and J. S. Lee, "Spectral efficiencies of channel-interleaved bidirectional and unidirectional ultradense WDM for metro applications," J. Light. Technol. 30, 229-233 (2012). https://doi.org/10.1109/JLT.2011.2180697
  20. H. Huang, J. Heilmeyer, M. Grozing, M. Berroth, J. Leibrich, and W. Rosenkranz, "An 8-bit 100-GS/s Distributed DAC in 28-nm CMOS for optical communications," IEEE Trans. Microw. Theory Tech. 63, 1211-1218 (2015). https://doi.org/10.1109/TMTT.2015.2403846
  21. S. T. Cundiff and A. M. Weiner, "Optical arbitrary waveform generation," Nat. Photonics 4, 760-767 (2010). https://doi.org/10.1038/nphoton.2010.196
  22. J. Dunayevsky and D. M. Marom, "MEMS spatial light modulator for phase and amplitude modulation of spectrally dispersed light," J. Microelectromech. Syst. 22, 1213-1221 (2013). https://doi.org/10.1109/JMEMS.2013.2262600
  23. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, "Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing," J. Light. Technol. 26, 670-677 (2008). https://doi.org/10.1109/JLT.2007.916580
  24. Z. Xuan and F. Aflatouni, "Integrated coherent optical receiver with feed-forward carrier recovery," Opt. Express 28, 16073-16088 (2020). https://doi.org/10.1364/oe.389865
  25. Y. Wang, X. Li, Z. Jiang, L. Tong, W. Deng, X. Gao, X. Huang, H. Zhou, Y. Yu, L. Ye, X. Xiao, and X. Zhang, "Ultrahigh-speed graphene-based optical coherent receiver," Nat. Commun. 12, 5076 (2021).