Acknowledgement
2-Year Research Grant of Pusan National University.
References
- K. H. Lee, "Application of plating simulation for PCB and pakaging process," J. Microelectron. Electron. Packag. Soc. 19, 1-7 (2012). https://doi.org/10.6117/kmeps.2012.19.3.001
- F. Reilly, "XRF measurement of gold plating thickness," Met. Finish. 93, 33-35 (1995). https://doi.org/10.1016/0026-0576(95)90686-C
- V. Y. Silkin and A. E. Ponomarev, "Measurement of coating thickness by the eddy-current method," Meas. Tech. 36, 997-998 (1993). https://doi.org/10.1007/BF00995791
- J. W. Park, Y. SY, J. Y. Jeong, K. M. Kim, and J. H. Kang, "Evaluation of chemical plating thickness measurement machine," in Proc. Korean Society of Precision Engineering Conference, (Jeju island, Korea, May 23-28, 2009), pp. 489-490.
- H. T. Francis, "An electrolytic thickness tester for plated metal coatings," J. Electrochem. Soc. 93, 79 (1948).
- B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997). https://doi.org/10.1364/OL.22.001704
- S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). https://doi.org/10.1364/OL.22.000340
- Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, "Distributed optical fiber sensors based on optical frequency domain reflectometry: a review," Sensors 18, 1072 (2018).
- S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
- F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-243 (2004). https://doi.org/10.1117/1.1631921
- W. Yang, J. Hwang, and S. Moon, "Beam-scanning imaging needle for endoscopic optical coherence tomography," Curr. Opt. Photonics 5, 532-537 (2021).
- W. Song, S. S. Lee, B.-I. Lee, and E. S. Choi, "Analysis of the scattering coefficients of microspheres using spectroscopic optical coherence tomography," Curr. Opt. Photonics 5, 278-288 (2021). https://doi.org/10.3807/COPP.2021.5.3.278
- D.-S. Kim and S. Moon, "Optimized working distance of a micro-optic OCT imaging probe," Curr. Opt. Photonics 4, 330-335 (2020). https://doi.org/10.3807/COPP.2020.4.4.330
- C. Z. Kim, S. J. Lee, S. S. Hwang, Y. G. Chae, D. Y. Kwon, T. Y. Ko, J. H. Kim, M. J. Jung, R. Masanganise, C. Oak, and Y.- C. Ahn, "In vivo enhanced indocyanine green-photothermal therapy for a subconjunctival tumor," Curr. Opt. Photonics 5, 311-321 (2021). https://doi.org/10.3807/COPP.2021.5.3.311
- S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y. S. Yoo, C. K. Joo, S. Moon, and W. Jung, "Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography," J. Biomed. Opt. 22, 125005 (2017).
- C. Song, P. L. Gehlbach, and J. U. Kang, "Active tremor cancellation by a 'smart' handheld vitreoretinal microsurgical tool using swept source optical coherence tomography," Opt. Express 20, 23414-23421 (2012). https://doi.org/10.1364/OE.20.023414
- A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). https://doi.org/10.1364/OL.24.001484
- X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, "Fiberoptic Fourier-domain common-path OCT," Chin. Opt. Lett. 6, 899-901 (2008). https://doi.org/10.3788/COL20080612.0899
- Z. Ma, X. Liu, B. Yin, Y. Zhao, J. Liu, Y. Yu, and Y. Wang, "Common-path-based device for magnetomotive OCT noise reduction," Appl. Opt. 59, 1431-1437 (2020). https://doi.org/10.1364/ao.377118
- C. Wang, Q. Zhang, Y. Wang, X. Zhang, and L. Zhang, "Longrange common-path spectral domain optical coherence tomography," Opt. Express 27, 12483-12490 (2019). https://doi.org/10.1364/oe.27.012483
- S. Zhou, W. Yang, Y. Wang, Z. Chen, and T. Yuan, "Handheld optical coherence tomography scanner using a common-path probing arm with long working distance," Opt. Commun. 499, 127254 (2021).
- J.-S. Park, M.-Y. Jeong, and C.-S. Kim, "Post-tuning of sample position in common-path swept-source optical coherence tomography," J. Opt. Soc. Korea 15, 380-385 (2011). https://doi.org/10.3807/JOSK.2011.15.4.380
- J. Izatt, M. Choma, and A. H. Dhalla, "Theory of optical coherence tomography," in Optical Coherence Tomography (Springer, Berlin, Heidelberg, 2008), pp. 47-72.
- U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber commonpath optical coherence tomography: Sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electron. 11, 799-805 (2005). https://doi.org/10.1109/JSTQE.2005.857380
- C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics," Opt. Lett. 26, 1271-1273 (2001). https://doi.org/10.1364/OL.26.001271
- T. J. Flynn, "Two-dimensional phase unwrapping with minimum weighted discontinuity," J. Opt. Soc. Am. A 14, 2692- 2701 (1997). https://doi.org/10.1364/JOSAA.14.002692
- J. Zhang, B. Rao, L. Yu, and Z. Chen, "High-dynamic-range quantitative phase imaging with spectral domain phase microscopy," Opt. Lett. 34, 3442-3444 (2009). https://doi.org/10.1364/OL.34.003442
- M. Schlesinger and M. Paunovic, Modern Electroplating, 5th ed. (John Wiley & Sons, USA, 2011).
- Y. Li, S. Moon, J. J. Chen, Z. Zhu, and Z. Chen, "Ultrahighsensitive optical coherence elastography," Light. Sci. Appl. 9, 58 (2020).