DOI QR코드

DOI QR Code

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Do Won, Kim (Department of Advanced Circuit Interconnection, Pusan National University) ;
  • Nam Su, Park (Department of Advanced Circuit Interconnection, Pusan National University) ;
  • Gyeong Hun, Kim (Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University) ;
  • Yang Do, Kim (School of Materials Science and Engineering, Pusan National University) ;
  • Chang-Seok, Kim (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • Received : 2022.11.03
  • Accepted : 2022.12.28
  • Published : 2023.02.25

Abstract

Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

Keywords

Acknowledgement

2-Year Research Grant of Pusan National University.

References

  1. K. H. Lee, "Application of plating simulation for PCB and pakaging process," J. Microelectron. Electron. Packag. Soc. 19, 1-7 (2012).   https://doi.org/10.6117/kmeps.2012.19.3.001
  2. F. Reilly, "XRF measurement of gold plating thickness," Met. Finish. 93, 33-35 (1995).   https://doi.org/10.1016/0026-0576(95)90686-C
  3. V. Y. Silkin and A. E. Ponomarev, "Measurement of coating thickness by the eddy-current method," Meas. Tech. 36, 997-998 (1993).   https://doi.org/10.1007/BF00995791
  4. J. W. Park, Y. SY, J. Y. Jeong, K. M. Kim, and J. H. Kang, "Evaluation of chemical plating thickness measurement machine," in Proc. Korean Society of Precision Engineering Conference, (Jeju island, Korea, May 23-28, 2009), pp. 489-490.  
  5. H. T. Francis, "An electrolytic thickness tester for plated metal coatings," J. Electrochem. Soc. 93, 79 (1948).  
  6. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).   https://doi.org/10.1364/OL.22.001704
  7. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).   https://doi.org/10.1364/OL.22.000340
  8. Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, and T. Liu, "Distributed optical fiber sensors based on optical frequency domain reflectometry: a review," Sensors 18, 1072 (2018).  
  9. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).   https://doi.org/10.1364/OE.11.002953
  10. F. Blais, "Review of 20 years of range sensor development," J. Electron. Imaging 13, 231-243 (2004).   https://doi.org/10.1117/1.1631921
  11. W. Yang, J. Hwang, and S. Moon, "Beam-scanning imaging needle for endoscopic optical coherence tomography," Curr. Opt. Photonics 5, 532-537 (2021).  
  12. W. Song, S. S. Lee, B.-I. Lee, and E. S. Choi, "Analysis of the scattering coefficients of microspheres using spectroscopic optical coherence tomography," Curr. Opt. Photonics 5, 278-288 (2021).   https://doi.org/10.3807/COPP.2021.5.3.278
  13. D.-S. Kim and S. Moon, "Optimized working distance of a micro-optic OCT imaging probe," Curr. Opt. Photonics 4, 330-335 (2020).   https://doi.org/10.3807/COPP.2020.4.4.330
  14. C. Z. Kim, S. J. Lee, S. S. Hwang, Y. G. Chae, D. Y. Kwon, T. Y. Ko, J. H. Kim, M. J. Jung, R. Masanganise, C. Oak, and Y.- C. Ahn, "In vivo enhanced indocyanine green-photothermal therapy for a subconjunctival tumor," Curr. Opt. Photonics 5, 311-321 (2021).   https://doi.org/10.3807/COPP.2021.5.3.311
  15. S. Shin, J. K. Bae, Y. Ahn, H. Kim, G. Choi, Y. S. Yoo, C. K. Joo, S. Moon, and W. Jung, "Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography," J. Biomed. Opt. 22, 125005 (2017).  
  16. C. Song, P. L. Gehlbach, and J. U. Kang, "Active tremor cancellation by a 'smart' handheld vitreoretinal microsurgical tool using swept source optical coherence tomography," Opt. Express 20, 23414-23421 (2012).   https://doi.org/10.1364/OE.20.023414
  17. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).   https://doi.org/10.1364/OL.24.001484
  18. X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, "Fiberoptic Fourier-domain common-path OCT," Chin. Opt. Lett. 6, 899-901 (2008).   https://doi.org/10.3788/COL20080612.0899
  19. Z. Ma, X. Liu, B. Yin, Y. Zhao, J. Liu, Y. Yu, and Y. Wang, "Common-path-based device for magnetomotive OCT noise reduction," Appl. Opt. 59, 1431-1437 (2020).   https://doi.org/10.1364/ao.377118
  20. C. Wang, Q. Zhang, Y. Wang, X. Zhang, and L. Zhang, "Longrange common-path spectral domain optical coherence tomography," Opt. Express 27, 12483-12490 (2019).   https://doi.org/10.1364/oe.27.012483
  21. S. Zhou, W. Yang, Y. Wang, Z. Chen, and T. Yuan, "Handheld optical coherence tomography scanner using a common-path probing arm with long working distance," Opt. Commun. 499, 127254 (2021).  
  22. J.-S. Park, M.-Y. Jeong, and C.-S. Kim, "Post-tuning of sample position in common-path swept-source optical coherence tomography," J. Opt. Soc. Korea 15, 380-385 (2011).   https://doi.org/10.3807/JOSK.2011.15.4.380
  23. J. Izatt, M. Choma, and A. H. Dhalla, "Theory of optical coherence tomography," in Optical Coherence Tomography (Springer, Berlin, Heidelberg, 2008), pp. 47-72.  
  24. U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber commonpath optical coherence tomography: Sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electron. 11, 799-805 (2005).   https://doi.org/10.1109/JSTQE.2005.857380
  25. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics," Opt. Lett. 26, 1271-1273 (2001).   https://doi.org/10.1364/OL.26.001271
  26. T. J. Flynn, "Two-dimensional phase unwrapping with minimum weighted discontinuity," J. Opt. Soc. Am. A 14, 2692- 2701 (1997).   https://doi.org/10.1364/JOSAA.14.002692
  27. J. Zhang, B. Rao, L. Yu, and Z. Chen, "High-dynamic-range quantitative phase imaging with spectral domain phase microscopy," Opt. Lett. 34, 3442-3444 (2009).   https://doi.org/10.1364/OL.34.003442
  28. M. Schlesinger and M. Paunovic, Modern Electroplating, 5th ed. (John Wiley & Sons, USA, 2011).  
  29. Y. Li, S. Moon, J. J. Chen, Z. Zhu, and Z. Chen, "Ultrahighsensitive optical coherence elastography," Light. Sci. Appl. 9, 58 (2020).