DOI QR코드

DOI QR Code

Effect of Dictyopteris divaricata Extracts on Adipogenesis in 3T3-L1 Preadipocytes

미끈뼈대그물말(Dictyopteris divaricata) 추출물의 항비만 효과

  • Chul Hwan Kim (National Marine Biodiversity Institute of Korea) ;
  • Seok-Chun Ko (National Marine Biodiversity Institute of Korea) ;
  • Hyun-Soo Kim (National Marine Biodiversity Institute of Korea) ;
  • Gun-Woo Oh (National Marine Biodiversity Institute of Korea) ;
  • Ji-Yul Kim (National Marine Biodiversity Institute of Korea) ;
  • Kyung Woo Kim (National Marine Biodiversity Institute of Korea) ;
  • Jeong Min Lee (National Marine Biodiversity Institute of Korea) ;
  • Myeong-Seok Lee (National Marine Biodiversity Institute of Korea) ;
  • Yun Gyeong Park (National Marine Biodiversity Institute of Korea) ;
  • Gyeong Lee (National Marine Biodiversity Institute of Korea) ;
  • Jae-Young Je (School of Smart Healthcare, Pukyong National University) ;
  • Jung Hye Won (National Marine Biodiversity Institute of Korea) ;
  • Young Jun Kim (Department of Food Regulatory Science, Korea University) ;
  • Dae-Sung Lee (National Marine Biodiversity Institute of Korea)
  • Received : 2023.08.07
  • Accepted : 2023.09.21
  • Published : 2023.12.31

Abstract

Dictyopteris divaricata, a type of marine brown algae, has been studied for its various biological properties, including anti-inflammatory, antidiabetic, and whitening effects. However, its potential antiobesity effects have not been extensively explored. This study aimed to examine the impact of D. divaricata ethanol extract (DDE) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. Our results showed that when 3T3-L1 preadipocytes were treated with noncytotoxic concentrations of DDE there was a concentration-dependent decrease in fat accumulation rate and triglycerid production compared with the control. Furthermore, DDE significantly reduced the expression of transcription factors (PPARγ, C/EBPα, and SREBP-1) and fatty acid transport protein (FABP4), which are crucial for 3T3-L1 preadipocyte differentiation. These findings suggest that DDE may exhibit antiobesity effects by suppressing the expression of lipogenic transcription factors and fatty acid transport proteins. Therefore, DDE holds potential as a therapeutic agent for obesity.

Keywords

Acknowledgement

본 논문은 해수부의 재원으로 국립해양생물자원관(2023M00500)의 지원을 받아 수행된 연구이며, 이에 감사드립니다.

References

  1. Park, S. Y.. Kim, Y. J., Park, G. and Kim, H. H. 2019. Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf. B Biointerfaces. 179, 421-428.  https://doi.org/10.1016/j.colsurfb.2019.03.066
  2. Guiry, M. D. and Guiry, G. M. 2017. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. 
  3. Song, F. H., Fan, X., Xu, X. L., Zhao, J. L., Han, L. J. and Shi, J. G. 2005. Chemical constituents of the brown alga Dictyopteris divaricata. J. Asian Nat. Prod. Res. 7, 777-781.  https://doi.org/10.1080/1028602032000169532
  4. Cui, Y., Liu, X., Li, S., Hao, L., Du, J., Gao, D., Kang, Q. and Lu, J. 2018. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int. J. Biol. Macromol. 117, 256-263.  https://doi.org/10.1016/j.ijbiomac.2018.05.134
  5. Siddiqui, N. Z., Rehman, A. U., Yousuf, W., Khan, A. I., Farooqui, N. A., Zang, S., Xin, Y. and Wang, L. 2022. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog. 14, 39. 
  6. Kim, J. K. and Kang, S. M. 2021. Antioxidant and Whitening effect of Dictyopteris spp. Extract. J. Kor. Soc. Cosmetol. 27, 614-623.  https://doi.org/10.52660/JKSC.2021.27.3.614
  7. Choi, E. O., Choi, Y. H. and Hwang, H. J. 2021. Inhibition of adipogenesis and melanogenesis by methanol extract of Codium fragile (Suringar) Hariot in 3T3-L1 adipocytes and B16F10 melanocytes. J. Mar. Biosci. Biotechnol. 13, 1-9. 
  8. Park, E., Lee, C. G., Kim, J., Yeo, S., Kim, J. A., Choi, C. W. and Jeong, S. Y. 2020. Antiobesity effects of Gentiana lutea extract on 3T3-L1 preadipocytes and a high-fat diet-induced mouse model. Molecules. 25, 2453. 
  9. Han, M. H., Jeong, J. S., Jeong, J. W., Choi, S. H., Kim, S. O., Hong, S. H., Park, C., Kim, B. W. and Choi, Y. H. 2017. Ethanol extracts of Aster yomena (Kitam.) Honda inhibit adipogenesis through the activation of the AMPK signaling pathway in 3T3-L1 preadipocytes. Drug discoveries & therapeutics. 11, 281-287. https://doi.org/10.5582/ddt.2017.01046
  10. Berk, P. D. and Verna, E. C. 2016. Nonalcoholic fatty liver disease: Lipids and insulin resistance. Clin. Liver Dis. 20, 245-262.  https://doi.org/10.1016/j.cld.2015.10.007
  11. Fruhbeck, G., Mendez-Gimenez, L., Fernandez-Formoso, J. A., Fernandez, S. and Rodriguez, A. 2014. Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63-93.  https://doi.org/10.1017/S095442241400002X
  12. Ali, A. T., Hochfeld, W. E., Myburgh, R. and Pepper, M. S. 2013. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92, 229-236.  https://doi.org/10.1016/j.ejcb.2013.06.001
  13. Mota de Sa, P., Richard, A. J., Hang, H. and Stephens, J. M. 2017. Transcriptional regulation of adipogenesis. Compr. Physiol. 7, 635-674.  https://doi.org/10.1002/cphy.c160022
  14. Guo, L., Li, X. and Tang, Q. Q. 2015. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 290, 755-761.  https://doi.org/10.1074/jbc.R114.619957
  15. Choi, I. S., Lee, J. S., Lee, S., Lee, H. J., Yeo, J., Cho, B. Y., Lee, J. H., Kim J. M., Jung, T. D., Choi, S. H., Kim, J. Y., Kang, S. N. and Lee, O. H. 2017. Effects of extracts of five species of Korean native forest plants on lipid accumulation and reactive oxygen species production during differentiation of 3T3-L1 preadipocytes. J. Korean Soc. Food Sci. Nutr. 46, 523-528.  https://doi.org/10.3746/jkfn.2017.46.4.523
  16. Furuhashi, M., Saitoh, S., Shimamoto, K. and Miura, T. 2014. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights: Cardiol. 8, CMC-S17067. 
  17. Kralisch, S. and Fasshauer, M. 2013. Adipocyte fatty acid binding protein: A novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia. 56, 10-21.  https://doi.org/10.1007/s00125-012-2737-4
  18. Pandit, R., Beerens, S. and Adan, R. A. H. 2017. Role of leptin in energy expenditure: The hypothalamic perspective. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R938-R947.  https://doi.org/10.1152/ajpregu.00045.2016
  19. Stern, J. H., Rutkowski, J. M. and Scherer, P. E. 2016. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770-784.  https://doi.org/10.1016/j.cmet.2016.04.011
  20. Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I. and Shen, C. L. 2014. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 25, 1-18.  https://doi.org/10.1016/j.jnutbio.2013.09.001
  21. Liu, F., Kim, J. K., Li, Y., Liu, X. Q., Li, J. and Chen, X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Nutr. 131, 2242-2247.  https://doi.org/10.1093/jn/131.9.2242
  22. Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J. and Spiegelman, B. M. 2002. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes. Dev. 16, 22-26.  https://doi.org/10.1101/gad.948702
  23. Kim, K. H. 2009. Perspective in regulation of adipogenesis by bioactive food components. Food Science and Industry. 42, 51-57.  https://doi.org/10.23093/FSI.2009.42.4.51
  24. Ji, N. Y., Wen, W., Li, X. M., Xue, Q. Z., Xiao, H. L. and Wang, B. G. 2009. Brominated selinane sesquiterpenes from the marine brown alga Dictyopteris divaricata. Mar. Drugs. 7, 355-360.  https://doi.org/10.3390/md7030355
  25. Wen, W., Li, F., Ji, N. Y., Li, X. M., Cui, C. M., Li, X. D., Zhang, L. N., Xue, Q. Z. and Wang, B. G. 2009. A new cadinane sesquiterpene from the marine brown alga Dictyopteris divaricata. Molecules. 14, 2273-2277.  https://doi.org/10.3390/molecules14062273
  26. Kim, J. K. and Kang, S. M. 2021. Antioxidant and Whitening effect of Dictyopteris spp. Extract. J. Kor. Soc. Cosmetol. 27, 614-623.  https://doi.org/10.52660/JKSC.2021.27.3.614
  27. Kim H. S., Wataya, Y., Takaya, Y., Ahnn, J. H., Jeon, B. H., Shin, H. J., Shin, C. H., Kim, Y. M. and Park, H. 2003. Antimalarial activity of marine alga aganist P. falciparum in vitro. Korean J. Oriental Physiology & Pathology. 17, 1321-1324. 
  28. Green, H. and Kehinde, O. 1975. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 5, 19-27.  https://doi.org/10.1016/0092-8674(75)90087-2
  29. Rubin, C. S., Hirsch, A., Fung, C. and Rosen, O. M. 1978. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253(20), 7570-7578.  https://doi.org/10.1016/S0021-9258(17)34541-6
  30. Smith, P. J., Wise, L. S., Berkowitz, R., Wan, C. and Rubin, C. S. 1988. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 263, 9402-9408.  https://doi.org/10.1016/S0021-9258(19)76555-7
  31. Padilla-Benavides, T., Velez-delValle, C., Marsch-Moreno, M., Castro-Munozledo, F. and Kuri-Harcuch, W. 2016. Lipogenic enzymes complexes and cytoplasmic lipid droplet formation during adipogenesis. J. Cell. Biochem. 117, 2315-2326.  https://doi.org/10.1002/jcb.25529
  32. Patil, R. S., Mane, M. P., Magdum, A. B. and Nimbalkar, M. S. 2022. Dioscorea oppositifolia plant extract reduces adipogenesis by down-regulating PPARγ, C/EBPα, SREBP-1, and FASN in 3T3L1 pro-adipocytes. Phytomedicine Plus. 2, 100293. 
  33. Jemai, R., Drira, R., Makni, M., Fetoui, H. and Sakamoto, K. 2020. Colocynth (Citrullus colocynthis) seed extracts attenuate adipogenesis by down-regulating PPARγ/SREBP-1c and C/EBPα in 3T3-L1 cells. Food Bioscience. 33, 100491. 
  34. Naowaboot, J., Chung, C. H., Pannangpetch, P., Choi, R., Kim, B. H., Lee, M. Y. and Kukongviriyapan, U. 2012. Mulberry leaf extract increases adiponectin in murine 3T3-L1 adipocytes. Nutr. Res. 32, 39-44.  https://doi.org/10.1016/j.nutres.2011.12.003
  35. Rosen, E. D. and Spiegelman, B. M. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145-171.  https://doi.org/10.1146/annurev.cellbio.16.1.145
  36. Reese, K. A. and Caldwell, J. H. 1999. Immunocytochemical localization of NaCh6 in cultured spinal cord astrocytes. Glia. 26, 92-96.  https://doi.org/10.1002/(SICI)1098-1136(199903)26:1<92::AID-GLIA10>3.0.CO;2-4
  37. Gregoire, F. M., Smas, C. M. and Sul, H. S. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809. https://doi.org/10.1152/physrev.1998.78.3.783