DOI QR코드

DOI QR Code

Three-dimensional numerical parametric study of deformation mechanisms of grouped piled raft foundation due to horizontal loading

  • Bo Wang (Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd.) ;
  • Houkun Cui (Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd.) ;
  • Yan Li (Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd.) ;
  • Ya Dai (Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd.) ;
  • Nan Zhang (Economic Research Institute, State Grid Jiangsu Electric Power Co., Ltd.)
  • Received : 2023.10.07
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

In this study, three-dimensional numerical parametric study was conducted to explore deformation mechanisms of grouped piled-raft-foundation due to lateral load in clays. Effects of load intensity, loading angle, soil stiffness, pile diameter, pile spacing and pile length on foundation deformations were explored. It is found that the smallest and largest movements of pile foundation are induced when the loading angles are 0° and 30°~60°, respectively. By increasing loading angle from 0° to 30°~60°, the resultant horizontal movements and settlements increase by up to 20.0% and 57.1%, respectively. Since connection beams can substantially increase integrity of four piled raft foundation, resultant horizontal movements, settlements and bending moments induced in the piled raft foundation decrease by up to 54.0%, 8.8% and 46.3%, respectively. By increasing soil stiffness five times, resultant horizontal movements and settlements of pile foundation decrease by up to 61.7% and 13.0%, respectively. It is indicated that effects of connection beam and soil stiffness on settlements of pile foundation are relatively small. When pile diameter is less than 1.4 m, deformations of piled raft foundation decrease substantially as a reduction in the pile diameter. Two dimensional groups are proposed to develop calculation charts of horizontal movements and settlements of pile foundation. The proposed calculation charts can directly estimate movements of piled raft foundation under arbitrary loading, ground and pile conditions.

Keywords

Acknowledgement

This work was supported by the Economic Research Institute, State Grid Jiangsu Electric Power Co. Ltd. (Grant No. B710K0238WTI).

References

  1. Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. https://doi.org/10.12989/gae.2014.6.4.391.
  2. Bi, W., Tian, L., Li, C., Ma, Z. and Pan, H. (2023), "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect", Reliab. Eng. Syst. Safe., 229(1), 108875. https://doi.org/10.1016/j.ress.2022.108875.
  3. Brinkgreve, R.B.J. and Broere, W. (2004), PLAXIS 3D Tunnel Version 2, PLAXIS by, Netherlands.
  4. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.
  5. Dikshit, S. and Alipour, A. (2023), "A moment-matching method for fragility analysis of transmission towers under straight line winds", Reliab. Eng. Syst. Safe., 236, 109241. https://doi.org/10.1016/j.ress.2023.109241.
  6. Dong, X.S., Wen, G.R., Zhao, M.H., Yang, Y., Li, M., and Zhao, L. (2023), "Study of the prevention method of ±800 kV transmission tower foundation deviation", Energies, 16(6), 16062557. https://doi.org/10.3390/en16062557.
  7. Edgar, T.H. and Sordo, E. (2017), "Structural behaviour of lattice transmission tower subjected to wind load", Struct. Infrastruct. Eng., 13(11), 1462-1475. https://doi.org/10.1080/15732479.2017.1290120.
  8. Fu, X. and Li, H.N. (2019), "Dynamic analysis of transmission tower-line system subjected to wind and rain loads", J. Wind Eng. Ind. Aerod., 157(10), 95-103. https://doi.org/10.1016/j.jweia.2016.08.010.
  9. Fu, X., Wang, J., Li, H.N., Li, J. and Yang, L.D. (2019), "Full-scale test and its numerical simulation of a transmission tower under extreme wind loads", J. Wind Eng. Ind. Aerod. 190, 119-133. https://doi.org/10.1016/j.jweia.2019.04.011.
  10. Hamada, A., Damatty, A.E., Hangan, H. and Shehata, A. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., 13, 451-469. https://doi.org/10.12989/was.2010.13.5.451.
  11. Huang, M.F., Lou, W.J., Yang, L., Sun, B.N., Shen, G.H. and Tse, K.T. (2012), "Experimental and computational simulation for wind effects on the Zhoushan transmission towers", Struct. Infrastruct. Eng., 8(8), 619-630. https://doi.org/10.1080/15732479.2010.497540.
  12. Huang, X., Huang, H.W. and Zhang, D.M. (2014), "Centrifuge modelling of deep excavation over existing tunnels", Proceedings of the ICE-Geotechnical Engineering, 167(2), 3-18. https://doi-org/10.1680/geng.11.00045.
  13. Jayalekshmi, B.R., Jisha, S.V. and Shivashankar, R. (2015), "Wind load analysis of tall chimneys with piled raft foundation considering the flexibility of soil", Int. J. Adv. Struct. Eng., 7, 95-115. https://doi.org/10.1007/s40091-015-0085-6.
  14. Mara, T.G. and Hong, H.P. (2013), "Effect of wind direction on the response and capacity surface of a transmission tower", Eng. Struct., 57(12), 493-501. https://doi.org/10.1016/j.engstruct.2013.10.004.
  15. Ng, C.W.W., Shakeel, M., Wei, J. and Lin, S. (2021), "Performance of existing piled raft and pile group due to adjacent multi-propped excavation: 3d centrifuge and numerical modelling", J. Geotech. Geoenviron. Eng., 147 (4), 04021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501.
  16. Savory, E., Parke, G.A.R. and Zeinoddini, M. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23(4), 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6.
  17. Shi, J.W., Fu, Z.Z. and Guo, W.L. (2019), "Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation", Comput. Geotech., 106, 108-116. https://doi.org/ 10.1016/j.compgeo.2018.10.019.
  18. Shi, J.W., Ng, C.W.W. and Chen, Y.H. (2015), "Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel", Comput. Geotech., 63, 146-158. https://doi.org/ 10.1016/j.compgeo.2014.09.002.
  19. Shi, J.W., Wang, J.P., Chen Y.H., Shi, C., Lu, H., Ma, S.K. and Fan, Y.B. (2023), "Physical modeling of the influence of tunnel active face instability on existing pipelines", Tunn. Undergr. Sp. Tech., 140, 105281. https://doi.org/10.1016/j.tust.2023.105281.
  20. Shi, W., Liu, Y.Z., Wang, W.H., Cui, L. and Li, X. (2023), "Numerical study of an ice-offshore wind turbine structure interaction with the pile-soil interaction under stochastic wind loads", Ocean Eng., 273(4), 113984. https://doi.org/10.1016/j.oceaneng.2023.113984.
  21. Shu, Q.J., Huang, Z.H., Yuan, G.L., Ma, W.Q., Ye, S. and Zhou, J. (2018), "Impact of wind loads on the resistance capacity of the transmission tower subjected to ground surface deformations", Thin-Wall. Struct., 131(10), 619-630. https://doi.org/10.1016/j.tws.2018.07.020.
  22. Wang, X.F., Li, S.X. and Li, J.L. (2022). "Effects of pile arrangement on lateral response of group-pile foundation for offshore wind turbines in sand", Appl. Ocean Res., 124(7), 103194. https://doi.org/10.1016/j.apor.2022.103194.
  23. Zheng, G., Yang, X.Y., Zhou, H.Z., Du, Y.M., Sun, J.Y. and Yu, X.X. (2018), "A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations," Comput. Geotech., 95, 119-128. https://doi.org/10.1016/j.compgeo.2017.10.006.
  24. Zou, X., Wang, Y., Zhou, M. and Zhang, X. (2022), "Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay", Geomech. Eng., 28(6), 585-598. https://doi.org/10.12989/gae.2022.28.6.585.