DOI QR코드

DOI QR Code

A Monte Carlo Study of the Diffusion Process of Thomson-Scattered Line Radiation in Phase Space

  • Hyeon Yong Choe (Department of Physics and Astronomy, Sejong University) ;
  • Hee-Won Lee (Department of Physics and Astronomy, Sejong University)
  • Received : 2023.02.02
  • Accepted : 2023.03.01
  • Published : 2023.12.30

Abstract

We investigate the diffusion process of Thomson-scattered line photons in both real space and frequency space through a Monte Carlo approach. The emission source is assumed to be monochromatic and point-like embedded at the center of a free electron region in the form of a sphere and a slab. In the case of a spherical region, the line profiles emergent at a location of Thomson optical depth τTh from the source exhibit the full width of the half maximum σλ ≃ τ1.5Th. In the slab case, we focus on the polarization behavior where the polarization direction flips from the normal direction of the slab to the parallel as the slab optical depth τTh increases from τTh ≪ 1 to τTh ≫ 1. We propose that the polarization flip to the parallel direction to the slab surface in optically thick slabs is attributed to the robustness of the Stokes parameter Q along the vertical axis with respect to the observer's line of sight whereas randomization dominates the remaining region as τTh increases. A brief discussion on the importance of our study is presented.

Keywords

References

  1. Afanasiev, V. L., Popovic, L. C., & Shapovalova, A. I. 2019, MNRAS, 482, 4985
  2. Agol, E., & Blaes, O. 1996, MNRAS, 282, 965
  3. Angel, J. R. P. 1969, ApJ, 158, 219
  4. Chandrasekhar, S. 1960, Radiative transfer (New York: Dover Publications)
  5. Chang, S.-J., Lee, H.-W., Lee, H.-G., et al. 2018, ApJ, 866, 129
  6. Chang, S.-J., Lee, H.-W., & Yang, Y. 2017, MNRAS, 464, 5018
  7. Chang, S.-J., Yang, Y., Seon, K.-I., Zabludoff, A., & Lee, H.-W. 2023, ApJ, 945, 100 https://doi.org/10.3847/1538-4357/acac98
  8. Dirac, P. A. M. 1925, MNRAS, 85, 825
  9. Kim, E., Yang, Y., Zabludoff, A., et al. 2020, ApJ, 894, 33
  10. Kim, H. J., Lee, H.-W., & Kang, S. 2007, MNRAS, 374, 187
  11. Lee, H.-W. 1999, ApJ, 511, L13
  12. Lee, H.-W. 2000, ApJ, 541, L25
  13. Lee, H. W., Blandford, R. D., & Western, L. 1994, MNRAS, 267, 303
  14. Loeb, A. 1998, ApJ, 508, L115
  15. Mihalas, D. 1978, Stellar atmospheres (San Francisco: W. H. Freeman & Company)
  16. Nussbaumer, H., Schmid, H. M., & Vogel, M. 1989, A&A, 211, L27
  17. Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active galactic nuclei (Sausalito, Calif.: University Science Books)
  18. Park, H., Kim, H. J., Ahn, K., et al. 2022, ApJ, 931, 126
  19. Phillips, K. C., & Meszaros, P. 1986, ApJ, 310, 284
  20. Schmid, H. M. 1989, A&A, 211, L31
  21. Schmid, H. M. 1995, MNRAS, 275, 227
  22. Sekeras, M., & Skopal, A. 2012, MNRAS, 427, 979
  23. Seon, K.-I., Song, H., & Chang, S.-J. 2022, ApJS, 259, 3 https://doi.org/10.3847/1538-4365/ac3af1
  24. Warner, B. 1995, Cambridge Astrophysics, Vol. 28, Cataclysmic variable stars (Cambridge University Press)