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Abstract
We investigate the diffusion process of Thomson-scattered line photons in both real space and frequency space through a Monte
Carlo approach. The emission source is assumed to be monochromatic and point-like embedded at the center of a free electron
region in the form of a sphere and a slab. In the case of a spherical region, the line profiles emergent at a location of Thomson
optical depth τTh from the source exhibit the full width of the half maximum σλ ≃ τ1.5Th . In the slab case, we focus on the
polarization behavior where the polarization direction flips from the normal direction of the slab to the parallel as the slab optical
depth τTh increases from τTh ≪ 1 to τTh ≫ 1. We propose that the polarization flip to the parallel direction to the slab surface in
optically thick slabs is attributed to the robustness of the Stokes parameter Q along the vertical axis with respect to the observer’s
line of sight whereas randomization dominates the remaining region as τTh increases. A brief discussion on the importance of
our study is presented.
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1. Introduction

Various spectral emission lines are formed in ionized nebulae
through recombination or collisional excitation followed by
radiative de-excitation. These emission nebulae are an essen-
tial aspect of astrophysically important objects including active
galactic nuclei, x-ray binaries, cataclysmic variables, planetary
nebulae, symbiotic stars and remnants of various explosive
events such as supernovae and gamma ray bursts. Emission
lines carry important information regarding the chemical abun-
dance, kinematics and matter distribution (e.g., Osterbrock
1989; Warner 1995).

These emission lines are formed in an environment where
free electrons are prevalent so that electron scattering is also
an essential ingredient that has to be incorporated in the inves-
tigation of the emission line radiative transfer. UV and optical
emission lines are very efficient coolants for a photoionized
nebula, so that the nebula is maintained in thermal equilib-
rium with a temperature ∼104 K. The thermal speed of free
electrons corresponding to this temperature is ∼400 km s−1,
from which emission line photons acquire a Doppler factor
∆λ/λ ∼ 1.3 × 10−3 per each electron scattering event. This
implies that Thomson scattering of emission line photons give
rise to the formation of broad wing features whose strength and
width are determined by the scattering optical depth and the

electron temperature. In addition, the cross section of Thom-
son scattering is constant so that the line photons may escape
from the scattering region through a random-walk like fashion
when the Thomson scattering optical depth is high.

Chandrasekhar (1960) investigated radiative transfer of
Thomson-scattered radiation in a slab geometry to show that
emergent radiation can be linearly polarized with the degree
up to 11.7 percent when the slab is sufficiently optically thick
with respect to Thomson scattering. Dependent on the Thom-
son optical depth, the polarization behaviors are quite compli-
cated, rendering linear polarimetry an important probe to study
the accretion disk in these objects (e.g., Agol & Blaes 1996;
Afanasiev et al. 2019). Angel (1969) investigated the polariza-
tion of Thomson-scattered radiation in oblate spheroidal free
electron regions adopting a Monte Carlo technique. He veri-
fied the limiting value of 11.7 percent is achieved in a slab-like
geometry as the Thomson optical depth becomes sufficiently
high.

Phillips & Meszaros (1986) investigated the linear po-
larization of Thomson-scattered radiation in slab geometries.
They found that linear polarization develops along the normal
direction to the slab when the slab is optically thin. However,
the polarization direction flips to the parallel direction and the
linear degree of polarization approaches 11.7 percent as the
Thomson optical depth increases. However, these studies are
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Thomson Scattering in Phase Space

limited to the properties of the integrated radiation disregard-
ing the diffusion nature that takes place in both real space and
frequency spaces.

Lee (1999) pointed out that polarization of an emission
line emergent from a Thomson scattering medium can differ as
a function of wavelength because profile broadening is coupled
to the scattering number, which, in turn, affects the linear de-
gree of polarization. Using a Monte Carlo method, Kim et al.
(2007) demonstrated the possibility that Thomson-scattered
line features may exhibit complicated polarization structures
despite the wavelength independence of the Thomson scatter-
ing cross section. Further complications can be expected for
Thomson scattered spectral lines because the scattering num-
ber may affect the surface brightness, profile broadening and
polarization simultaneously.

With the advent of integral field spectrographs, spectro-
scopic and imaging observations can be achieved in a very
efficient way, which necessitates the investigation of photon
diffusion processes in both real and frequency spaces. In this
paper, we carry out Monte Carlo simulations to investigate the
basic properties of the diffusion processes adopting spherical
regions and slab regions with uniform electron density.

2. Frequency Redistribution
2.1. Monte Carlo Procedure
The Thomson scattering cross section is the basic physical
quantity which is given by the well-known formula

σTh =
8π

3
r2e , (1)

where re = e2/mec
2 is the classical electron radius. Here,

me and c are the electron mass and speed of light and e =

4.854× 10−10 esu is the electric charge given in c.g.s. unit.
In this section, we describe our Monte Carlo code for sim-

ulating the transfer of line photons that are Thomson-scattered
in an ionized region. The scattering region is assumed to be a
sphere or a slab, where a line emitting point source is embed-
ded at the center and free electrons are uniformly distributed
inside the region.

The line emitting source being assumed to be isotropic,
and the simulation begins with the generation of an initial
photon at the central point source. We trace the photon step
by step in scattering processes, and collect the information
of each photons for the line-of-sight. In the simulation, we
trace each photon from generation until it escapes from the
scattering region and reaches the detector. We assume that the
line emitting source is purely monochromatic and isotropic.

The free path length l between scattering events is related
to the scattering optical depth τ by

τ = neσThl (2)

where ne is the electron number density inside the scattering
region.

The wavelength independence of the Thomson scattering
cross section guarantees that the Thomson scattering optical

depth is directly proportional to the physical path length be-
tween scattering events. Therefore, one is allowed to make a
direct use of τ to locate the physical location of each photon
while we trace it in the simulation. In this case, the scatter-
ing region is specified by the total Thomson optical depth τtot
defined by

τtot = neσThR, (3)

where R is the radius of the sphere or the thickness of the slab.
The scattering optical depth between scattering events is

chosen in a probabilistic way. We note that the probability that
Thomson scattering occurs within a scattering optical depth τ

is
P (τ) =

∫ τ

0

e−xdx = 1− e−τ . (4)

We choose a number r using a uniform random number gener-
ator in the interval [0, 1] to identify it with P (τ), which should
also be in the same interval. Equation (4) is readily inverted to
yield

τ = ln [1− P (τ)] = ln(1− r). (5)

Noting that 1−r is also regarded as a uniform random number
in the interval [0, 1], we simply put

τ = ln r, (6)

to properly simulate the scattering process.
With the information of the current position ri and the

wave vector k̂, the next scattering site rf is given by

rf = ri + τ k̂. (7)

A check is made whether rf is inside the scattering region. If
rf is inside the region, then rf becomes the new initial position
for next Thomson scattering. Otherwise the photon escapes
from the region to reach an observer.

In the first case where rf is inside the scattering region, we
must choose the wave vector and polarization state of the pho-
ton. In our simulations, we adopt the density matrix formalism
to produce the polarization and wave vector of the scattered
photon (Lee et al. 1994). The density matrix associated with a
given photon is represented by a 2× 2 Hermitian matrix

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
, (8)

where the 4 independent components of the photon density
matrix are related to the Stokes parameters I,Q, U and V by

ρ11 = I +Q, ρ22 = I −Q, ρ12 = ρ∗21 = U + iV (9)

(e.g., see Seon et al. 2022).
The Thomson scattering does not introduce circular polar-

ization when the incident radiation is not circularly polarized
unless the magnetic field is present (Agol & Blaes 1996). In
this work, no magnetic field assumed to be present in the scat-
tering medium and V = 0 for the initial photons generated
at the center. Therefore, V remains zero throughout the en-
tire scattering process and the density matrix becomes a real
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symmetric matrix. Furthermore, we also assume that the line
emitting source is also completely unpolarized so that

ρ11 = ρ22 = 0.5, ρ12 = ρ21 = 0. (10)

When no consideration of the circular polarization is
made, the density matrix ρ′ of the scattered photon propagat-
ing in the new direction k̂ = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′)

is related to that of the incident radiation with the unit wave
vector k̂ = (sin θ cosϕ, sin θ sinϕ, cosϕ) as follows (e.g. Lee
1999; Seon et al. 2022).

ρ′11 = cos2 ∆ϕ ρ11 − cos θ sin 2∆ϕ ρ12

+ cos2 θ sin2 ∆ϕ ρ22

ρ′12 =
1

2
cos θ′ sin 2∆ϕ ρ11

+ (cos θ cos θ′ cos 2∆ϕ+ sin θ sin θ′ cos∆ϕ) ρ12

− cos θ(sin θ sin θ′ sin∆ϕ

+
1

2
cos θ cos θ′ sin 2∆ϕ) ρ22

ρ′22 = cos2 θ′ sin2 ∆ϕ ρ11 + cos θ′(2 sin θ sin θ′ sin∆ϕ

+ cos θ cos θ′ sin 2∆ϕ) ρ12

+ (cos θ cos θ′ cos∆ϕ+ sin θ sin θ′)2 ρ22

(11)

Here, ∆ϕ = ϕ′ − ϕ is the difference of the azimuthal
angles made by the incident and scattered photons. The az-
imuthal dependence only through the difference ∆ϕ shows the
cylindrical symmetry of the scattering process with respect to
the direction of the incidence.

It turns out that the probability distribution of the new
unit wave vector k̂′ is given by

P (θ′, ϕ′; θ, ϕ) = N(ρ′11 + ρ′22), (12)

whereN is the normalization constant. The choice of θ′ and ϕ′

can be easily implemented using the rejection method. With
the new wave vector k̂f , the new Doppler factor along the new
propagation direction should be assigned in accordance with
Equation (20). Here, the electron velocity is chosen from a
random deviate with a Gaussian distribution. Finally, when
the photon escapes from the region, the final frequency is
recorded along its propagation direction.

2.2. Frequency Redistribution Function

In this section, we test our Monte Carlo code to produce the
frequency redistribution function and compare it with that de-
rived by Dirac (1925). In the test simulation, we introduce a
monochromatic line emitting source at an arbitrary location. A
line photon is subsequently incident on a free electron region
that is described by the Maxwell-Boltzmann distribution with
a temperature T = 104 K. Here, the photon is forced to be
scattered only once and escape from the region without further
interaction. We collect the singly Thomson scattered photon
and measure its frequency along the propagation direction.
This process is iterated sufficiently until the frequency redistri-
bution appears smooth for appropriate comparison. Here, the
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Figure 1. Distribution of the frequency shift introduced in an ensem-
ble of singly Thomson-scattered photons. The dotted red line shows
the frequency redistribution function introduced by Dirac (1925). The
simulation data are shown by the solid blue line. In this simulation,
all the photons are forced to be singly scattered and collected by the
detector.
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Figure 2. Line profiles of Thomson scattered photons in spherical
regions from a monochromatic isotropic source at the center. The
results of four values of τtot = 0.5, 1, 2, and 5 are shown.

frequency shift is measured using a dimensionless parameter
∆ defined as

∆ =
ν − ν0
βT ν0

, βT ≡
(

2kT

mec2

)1/2

. (13)

In Appendix A, we present the frequency redistribution
function based on Dirac’s approach in a heuristic manner (see
also Loeb 1998; Mihalas 1978). In Figure 1, we show the
distribution of frequency shift ∆ from our collection of singly
Thomson-scattered photons by the solid line. We also plot
the frequency redistribution function given by Equation (33)
with the dashed line. As is shown in the result, the agreement
between our simulation and Dirac’s redistribution function is
excellent. The sharp peak at the center (∆ = 0) is attributed
to the monochromaticity of the emission line source. The full
width at half maximum of the frequency redistribution function
is measured to be ∼1.1∆. About a half of singly scattered line
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Figure 3. The full width at half maximum of the frequency redistri-
bution function as a function of the total Thomson scattering optical
depth τtot in a spherical ionized region. The Monte Carlo data points
are fitted using the function f(τtot) = 0.38τ

3/2
tot + 1.4, which is

shown by the solid blue line.

photons reside in the interval (−0.5∆,+0.5∆).
In Figure 2, we show our simulation results obtained for

4 values of τtot in the range between 0.5 and 5. The scattering
region is a sphere of uniform electron density. The horizon-
tal axis is the dimensionless frequency deviation ∆. In the
upper left panel, we show our result for τtot = 0.5, in which
case most photons are singly scattered and only a very small
percentage of photons are scattered doubly or more. There-
fore, the line profile should be closely approximated by the
frequency redistribution function given by Dirac (1925).

A notable deviation is seen as τtot exceeds unity. It ap-
pears that the line profiles retain similarity and simply the line
width increases as τtot increases. One should also note that
as τtot increases, the total line flux of Thomson scattered ra-
diation also increases. For τtot > 2 almost all the photons are
scattered so that they escape from the region by diffusion in
real space while they undergo diffusion in frequency space at
the same time.

In Figure 3, we show the full width of the Thomson
line profiles shown in Figure 2 to focus on the effect of the
frequency diffusion as a function of the total Thomson scat-
tering optical depth τtot. As is naturally expected, the wing
broadening is monotonically increasing as a function of τtot.
The Monte Carlo data points are fitted using the functional
form

f(τtot) = aτ btot + c, (14)
where the fit parameters are obtained as

a = 0.38, b = 1.5, c = 1.4. (15)

The fitting curve is shown by the blue solid line in Figure 3.

3. Thomson Scattering in Spherical Regions
3.1. Surface Brightness
As a first step, we investigate the spatial diffusion process
of Thomson-scattered radiation in spherical ionized regions.

Even though we expect the polarization pattern along the cir-
cumference, we focus on the surface brightness in the spherical
geometries in this section. In Figure 4, we show the surface
brightness of spherical free electron regions, where a point-
like monochromatic emission source is embedded at the cen-
ter. The spherical region is assumed to be of uniform density
and the physical dimension is given by the Thomson scattering
optical depth τTh measured along the radial direction from the
center. Each image is produced with a total of 108 photons
from our Monte Carlo simulations.

In the figure, the simulation results for τTh = 0.1, 1, 5,

and 10 are shown. In order to better understand the diffusion
process in phase space, we divide the line photons into core
and wing photons. The core photons are defined as those with
frequency ν satisfying the following relation∣∣∣∣ν − ν0

ν0

∣∣∣∣ ≤ vth
c
. (16)

The right panels show the surface brightness integrated
over the entire frequency range. Because the Thomson scatter-
ing cross section is wavelength independent, the photon dis-
tributions shown by the surface brightness correspond to the
well-known random-walk processes. For τTh ≤ 1, the central
emission source is clearly seen, whereas the central source is
virtually indiscernible for τTh = 10.

The left and middle panels of Figure 4 show the surface
brightness of the same spherical regions using the core and
wing photons, respectively. In the cases of τTh = 0.1 and 1.0,
the surface brightness of core photons is similar to that of wing
photons. In particular, the center is quite bright for both core
and wing surface brightness images. The wing photons from
the center pixel are those photons that are backward-scattered
with approaching or receding electrons. More specifically, if
a line center photon emitted in the opposite direction to the
line of sight is incident on an electron approaching the center
and gets scattered toward the observer, the scattered photon
acquires a negative Doppler factor that tends to be less than
−vth/c and become a blue wing photon. Similarly, a backward
scattering with a receding electron tends to yield a red wing
photon.

However, a backward scattering with an electron with a
negligible Doppler factor results in a core photon. In addi-
tion, no frequency change is made from a forward scattering.
Therefore, the center pixel in the core surface brightness image
is made up of the non-scattered line center photons, forward
scattered photons and those photons scattered backward with
electrons with negligible Doppler factors.

Figure 5 shows the number Nphoton of photons in pixels
lying on the horizontal diameter of the circular image shown
in Figure 4. The blue lines show the core photon distributions
including non-scattered line center photons. The orange lines
show the distributions of wing photons, and the gray dashed
lines indicate the distributions of all the photons.

In this figure, the decrease of the center dominance is
clearly seen as τTh increases. In the case of τTh = 0.1,
we find that the core and wing photons are distributed in a
similar way except at the center region. The region outside
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Figure 4. Surface brightness of Thomson-scattered line radiation in spherical ionized regions with Thomson optical depths τTh = 0.1, 1, 5,

and 10. The emission line source is monochromatic and point-like embedded at the center. The line photons are divided into the core and wing
photons, where the core photons satisfy the condition given by Equation (16).

the center is filled with singly Thomson-scattered photons and
local variation of the spectral distribution is expected to be
negligible due to the wavelength independence of the Thomson
scattering cross section.

When τTh increases, the spatial diffusion is significant,
which enhances surface brightness as r/rmax increases. The

spatial diffusion is also tightly connected to diffusion in fre-
quency space so that the number of core photons decreases
considerably as τTh exceeds unity. In particular, for τTh = 10,
the number of core photons is smaller than that of wing photons
by an order of magnitude.
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are shown by the dashed line. As τTh becomes larger than 5, most of emergent line photons are wing photons through the diffusion in real and
frequency spaces.

3.2. Profile Broadening in Phase Space
In Figure 6, we show the locally varying profiles of Thomson-
scattered emission line emergent from the same spherical free
electron regions considered in Figures 4 and 5. The blue, or-
ange, green, red and purple lines show the profiles at the circu-
lar rings with the normalized radii r = 0.05, 0.25, 0.45, 0.65,

and 0.85 from the center of the circular image. The profiles are
normalized by requiring the peak value equal to unity. In all
the cases, the profile width increases as a function of τ . Even
in the low Thomson optical depth of τTh = 0.5, the profiles
get broadened toward the boundary despite the dominance of
singly Thomson-scattered photons.

In the case of τTh = 10, all the profiles are similar and
the full width at half maximum is ∼20 vth, which is quite
significant. In this thick geometry, diffusion both in real and
frequency spaces is almost complete. This is also confirmed
from the images shown in Figure 4, where the center pixel is
inconspicuous for τTh = 10. In contrast, for τTh ≤ 5, the
profile widths near the image center (shown by the blue lines)
are significantly narrower than those near the edge (shown by
the purple lines). This is because the memory of initial forward
scattering is not completely erased, which is also confirmed by
the bright center pixel in Figure 4.

4. Polarization Development in Slab Regions
In this section, we focus on the polarization development of
Thomson-scattered radiation in slab regions. As in the pre-
vious sections, we consider a monochromatic point source,
which is embedded at the center of the slab. For the sake of
simplicity, the slab is also assumed to be of uniform electron
density and characterized by the vertical Thomson scattering
optical depth τTh. Here, the Thomson scattering optical depth
τTh is measured along the slab normal direction from the cen-
ter. Our slab model is a pill box with the diameter being 5
times larger than the thickness, and we collect photons only
emerging through the cylinder top. As long as τTh ≥ 1, a

negligible fraction of photons escape through the lateral side
so that the pill box can be effectively regarded as an infinite
slab.

In Figure 7, we reproduce a representative result obtained
by Phillips & Meszaros (1986), in which the photon source is
located on the midplane of the slab. The vertical axis shows
the (signed) degree of linear polarization, where the negative
and positive degrees of polarization represent polarization de-
veloped in the direction parallel and perpendicular to the slab
normal, respectively. When the slab has a small Thomson
optical depth, the linear polarization is dominated by singly
scattered line photons, which are strongly polarized in the nor-
mal direction to the slab.

As we increase the slab optical depth to τTh = 10, the
linear degree of polarization approaches that obtained by Chan-
drasekhar (1960), which is marked by the stars in the figure.
The agreement is excellent, which serves as a check of the
code. In the grazing direction µ = 0 the polarization flip
occurs when τTh = 1.

In Figure 8, we show the surface brightness of the free
electron slabs with the vertical Thomson optical depth taking
the value of τTh = 1, 2, 5, and 10, when the line of sight makes
an angle of 80◦ with the slab normal. The left panel shows
the surface brightness of the Stokes parameter I . The surface
brightness for Q and U are displayed in the second and third
panels, respectively. The right panels show the linear degree
of polarization. The images shown in Figure 8 are prepared in
such a way that the line of sight passing the emission source
meets the origin of the coordinate system, resulting in the top
surface of the pill box appearing as an ellipse with the center
lying on the positive y−axis.

In the case of τTh = 1, the Stokes Q is strong positive
near the region of the strongest Stokes I , whereas we have
strong negative Q at side regions. In contrast, the Stokes U

is strong positive at the region left of the center and strong
negative on the opposite side. Due to the symmetry of the
scattering geometry, the polarization direction of the total ra-
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Figure 7. Linear degree of polarization of Thomson scattered ra-
diation from ionized slabs of uniform electron density obtained by
Phillips & Meszaros (1986) and reproduced from our simulation.
The color lines show the results by Phillips & Meszaros (1986) and
our simulation data are marked with error bars. The emission source
is embedded uniformly on the midplane of the slab. The stars show
the linear degree of polarization presented by Chandrasekhar (1960)
for extremely Thomson optically thick slab.

diation integrated over all the slab surface should be either
parallel or perpendicular to the slab normal. This implies that
the sum of the Stokes U over the entire slab surface vanishes
in all the cases and the total linear degree of polarization is
determined by the total sum of Q with respect to I (e.g., Lee
et al. 1994; Schmid 1995).

In order to trace the polarization flip represented by the
sign change of Q from negative to positive as τTh increases,
we need to pay attention to theQ surface brightness. As is seen
in Figure 8, we notice that positive Q persists near the center
for all τTh. However, the regions left and right to the center
are dominated by strong negative and positive U , respectively,
when τTh is small and get negligible as τTh increases. From
this result, we may conclude that the polarization flip is at-
tributed to the robustness of Q near the center region while

the other regions become very weak in Q. A very similar
behavior has been discussed for the transfer of Lyα in a very
thick neutral medium, because the phase function of Thomson
scattering is shared by Rayleigh scattering (Chang et al. 2017).

5. Summary and Discussion
We have carried out Monte Carlo simulations of the diffusion
process of Thomson-scattered line photons in phase space. For
simplicity, a point-like monochromatic line source is chosen.
The scattering geometry is either spherical or slab-like, where
the emission source is located at the center. In particular, we
have investigated the polarization flip from the slab normal
direction to the slab plane direction that takes place in slab ge-
ometries as the Thomson optical depth increases. We find that
the polarization near the center region persists to be along the
slab plane while the remaining regions are negligibly polarized
as τTh increases.

It is interesting to note that Hα emission lines of most
symbiotic stars and some planetary nebulae exhibit prominent
broad wings. The broad Hα wings are proposed to be formed
in the fast and tenuous wind from the hot white dwarf star.
According to Nussbaumer et al. (1989), Raman scattering of
continuum near Lyβ may also be responsible for the formation
of broad Hα wing features (see also Schmid 1989; Chang et al.
2018; Lee 2000). If Raman scattering with atomic hydrogen
is responsible for broad Balmer wings, then the Balmer wings
appear stronger in neutral regions than in ionized regions. Deep
high resolution spectroscopy covering Hα and Hβ will shed
much light on the origin of these wing features.

On the other hand, FUSE and IUE spectra of these objects
also reveal broad wing features around many UV emission
lines that appear to be consistent with Thomson scattering
with free electrons in the emission line region. In particular,
Sekeráš & Skopal (2012) performed line fitting analyses to UV
emission lines with well-developed wings to infer the Thomson
optical depth in several symbiotic stars. With the availability
of integrated field spectrographs, the local variation of wing
strengths may provide crucial information pointing out the
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Figure 8. Surface brightness and polarization of Thomson-scattered radiation emergent from a slab making an angle of 80◦ with the slab
normal. The monochromatic and point-like line source is embedded at the center of the slab. The first, second and third panels from the left
show the surface brightness of the Stokes parameters I,Q and U , and the right panels show the linear degree of polarization.

contributions of Raman and Thomson scattering processes to
the wing formation.

The diffusion process in phase space of Thomson-
scattered line photons can be an important reference frame
against which similar radiative processes can be compared.
For example, in an extremely thick neutral region, Lyα pho-
tons are transferred through diffusion in frequency and real
spaces in a more complicated way than Thomson-scattered
line photons. Extremely thick neutral regions can be found
in the intergalactic medium at around the end of the cosmic
reionization era, where Lyα photons are scattered so many
times before escape and may be observed as a Lyα halo spread
significantly both in real and frequency spaces (e.g., Park et al.
2022).

A similar environment is found in Lyman alpha blobs,
where substantially extended Lyα emission is observed. Chang
et al. (2023) propose that Lyα photons emitted from an ac-

tive galactic nucleus may spread through the circumgalactic
medium accompanied by profile broadening and polarization
development (e.g., Kim et al. 2020). The surface brightness
and local variation of polarization may provide crucial infor-
mation regarding the distribution and kinematics of the scat-
tering material.
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Appendix A. Frequency Redistribution of
Thomson-scattered Radiation

In this appendix, we discuss the frequency redistribution for
Thomson scattering. An incident photon with a definite fre-
quency ν is Thomson-scattered in an ionized region with a
fast moving electron to propagate in another direction with a
frequency ν′ which differs from ν. By the frequency redistri-
bution function, we mean the assignment of a new frequency
acquired by the scattered photon as a function of the inci-
dent photon frequency. The frequency redistribution function
should be dependent on the velocity distribution of the free
electrons in the scattering medium. Dirac (1925) presented
the frequency redistribution function in a scattering medium,
which is in a thermal distribution with a temperature T . Here,
we summarize the Dirac’s approach, which will be compared
with our Monte Carlo simulation results.

According to Dirac (1925), the frequency redistribution
function in an ionized region described by the Maxwell-
Boltzmann distribution with temperature T is given by

R(ν′, n̂′; ν, n̂) =
3

4

(1 + µ2)√
2π(1− µ)βT ν

exp

[
− (ν − ν′)2

2β2
T (1− µ)ν2

]
, (17)

where µ = n̂ · n̂′ is the cosine of the angle θ subtended by
the propagation directions of the incident and the scattered
radiation. The dimensionless parameter βT is defined as

βT =

(
2kT

mec2

)1/2

, (18)

which stands for the temperature scale relative to the electron
rest mass energy (e.g., Loeb 1998; Mihalas 1978). When the
parameter βT is comparable to unity, then the photon momenta
are big enough to disturb the electron momentum quite signif-
icantly. Therefore, the special relativistic effects are not negli-
gible any more and the scattering process should be treated as
the Compton scattering process.

Here, the Boltzmann factor e−mv2/(2kT ) is associated
with the Doppler factor acquired by the scattered photon, which
may be written as

(ν′ − ν)

ν
=

v

c
· (n̂′ − n̂). (19)

Noting that the Maxwell-Boltzmann distribution is isotropic,
we may consider that the electron velocity is along the direction
n̂′ without losing generality. Hence, we may write

(ν′ − ν)

ν
=

v

c
(1− µ), (20)

or equivalently

v = c

[
(ν′ − ν)

ν(1− µ)

]
, (21)

From this relation, one may find that the number density
of electrons contributing to the Doppler factor of (ν′ − ν)/ν

making a scattering angle of θ = cos−1 µ is proportional to
the Boltzmann factor given by

exp

[
− me

2kT

{
c(ν′ − ν)

ν(1− µ)

}2
]
= exp

[
− (ν − ν′)2

2β2
T (1− µ)ν2

]
. (22)

The normalization constant for this Boltzmann factor is√
2πβ2

T (1− µ)ν2, which justifies Equation (17).
We are also interested in the angle averaged of the fre-

quency redistribution function in order to obtain the kernel
function, which provides the frequency distribution of the
scattered radiation for a monochromatic line radiation source.
Fixing the the frequency of the incident radiation ν = ν0, we
consider

R(ν′, ν) =

∫
dν

∫
dΩ

4π

∫
dΩ′

4π
R(ν′, n̂′; ν, n̂)δ(ν − ν0). (23)

Taking advantage of the isotropy of the Maxwell-
Boltzmann distribution, and in the classical regime of βT ≪ 1,
in which ν′−ν ≪ ν, one may realize that the relevant integral
to be taken care of is given by∫ 1

−1

dµ
1 + µ2

√
1− µ

exp

[
−1

2

∆2

(1− µ)

]
. (24)

This integral admits a much simplified expression in terms
of the complementary error function defined as erfc(x) ≡
(2/

√
π)

∫∞
x

exp(−t2)dt. Explicitly, we perform integration
of the following expression

βT ν0R(ν′, ν) = βT ν0

∫ 1

−1

dµ

2
R(ν0, ν, µ)

=
3

8
√
2π

∫ 1

−1

dµ
1 + µ2

√
1− µ

exp

[
− ∆2

2(1− µ)

]
.

(25)

Using substitution of ∆2

2(1−µ) = x2, one may realize the
relevant integral becomes

A(∆) =
3|∆|
8
√
π

∫ ∞

|∆|
2

dx

(
2

x2
− ∆2

x4
+

∆4

4x6

)
e−x2

. (26)

Integrating by parts, for a positive constant a, we note that∫ ∞

a

x−2e−x2

dx =
1

a
e−a2

−
√
π erfc(a). (27)

For an even natural number 2n, if we define

In =

∫ ∞

a

x−2ne−x2

dx, (28)

then integration by parts yields a following recurrence relation

In =
1

2n− 1

e−a2

a2n−1
− 2

2n− 1
In−1. (29)

Here, it is also noted that

I0 =

√
π

2
erfc(a). (30)

For n = 2, we obtain

I2 =
1− 2a2

33
e−a2

+
2
√
π

3
erfc(a). (31)

Also for n = 3,

I3 =
3− 2a2 + 4a4

15a5
e−a2

− 4
√
π

15
erfc(a). (32)

Choe & Lee 31



Thomson Scattering in Phase Space

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

=
1.

0

I

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Q/I

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
U/I

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Pdeg

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

=
3.

0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

=
5.

0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

=
10

.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

0

1

2

3

4

5

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

= 30

Figure 9. Surface brightness and polarization of Thomson-scattered line radiation emergent from a slab making an angle of 30◦ with the slab
normal. The other parameters are the same as those of Figure 8.

Using these results, we finally obtain the frequency redis-
tribution function written as

R(ν′, ν) = (βT ν0)
−1

[(
11

10
+

2

5
∆2 +

∆4

20

)
e−∆2/4

√
π

−
(
3

2
+

∆2

2
+

∆4

20

)
|∆|
2

erfc

(
|∆|
2

)]
.

(33)

Appendix B. Polarization Distribution of
Thomson-scattered Radiation in
Slab Geometry

For illustrative purpose, in Figure 9, we show the polarization
and surface brightness of Thomson-scattered line radiation that
emerge to the line of sight making an angle of 30◦ with the
slab normal. When τTh is smaller or equal to unity, the po-
larization parallel to the slab normal is dominant, as is shown
by the blue dots in the Q/I images. When τTh exceeds 5,

the polarization in the parallel direction weakens, while the
polarization in the perpendicular direction persists. As Chan-
drasekhar (1960) showed, the overall polarization is weaker
for radiation emerging with θ = 30◦ than that with θ = 80◦

shown in Figure 8.
It is interesting to note that when τTh is low, we find that

the regions below the image center is particularly weakly polar-
ized. The weak polarization may be explained by considering
that the location on the slab surface where the observer’s line of
sight hit should be dominated by forward-scattered radiation.
However, as τTh increases, the diffusion in real and frequency
spaces tends to erase the memory of the initial starting position.
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