DOI QR코드

DOI QR Code

척추 방사선수술 시 다엽콜리메이터 위치 오차의 임상적 위험성 평가

Evaluation of Clinical Risk according to Multi-Leaf Collimator Positioning Error in Spinal Radiosurgery

  • 강동진 (인제대학교 상계백병원 방사선종양학과) ;
  • 오건 (고려대학교 보건과학대학 바이오의공학과) ;
  • 신영주 (인제대학교 상계백병원 방사선종양학과) ;
  • 강진규 (인제대학교 상계백병원 방사선종양학과) ;
  • 정재용 (인제대학교 상계백병원 방사선종양학과) ;
  • 이보람 (인하대학교병원 의과대학 방사선종양학과)
  • Dong‑Jin Kang (Department of Radiation Oncology, Inje University Sanggye Paik Hospital) ;
  • Geon Oh (Department of Bioengineering, Korea University) ;
  • Young‑Joo Shin (Department of Radiation Oncology, Inje University Sanggye Paik Hospital) ;
  • Jin-Kyu Kang (Department of Radiation Oncology, Inje University Sanggye Paik Hospital) ;
  • Jae-Yong Jung (Department of Radiation Oncology, Inje University Sanggye Paik Hospital) ;
  • Boram Lee (Department of Radiation Oncology, Inha university hospital)
  • 투고 : 2023.10.20
  • 심사 : 2023.11.24
  • 발행 : 2023.12.31

초록

The purpose of this study is to evaluate the clinical risk of spinal radiosurgery by calculating the dose difference due to dose calculation algorithm and multi-leaf collimator positioning error. The images acquired by the CT simulator were recalculated by correcting the multi-leaf collimator position in the dose verification program created using MATLAB and applying stoichiometric calibration and Monte Carlo algorithm. With multi-leaf collimator positioning error, the clinical target volume (CTV) showed a dose difference of up to 13% in the dose delivered to the 95% volume, while the gross tumor volume (GTV) showed a dose difference of 9%. The average dose delivered to the total volume showed dose variation from -8.9% to 9% and -10.1% to 10.2% for GTV and CTV, respectively. The maximum dose delivered to the total volume of the spinal cord showed a dose difference from -14.2% to 19.6%, and the dose delivered to the 0.35 ㎤ volume showed a dose difference from -15.5% to 19.4%. In future research, automating the linkage between treatment planning systems and dose verification programs would be useful for spinal radiosurgery.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government(MSIT) (No. 2022R1C1C1006840).

참고문헌

  1. Schuster JM, Grady MS. Medical management and adjuvant therapies in spinal metastatic disease. Neurosurg Focus. 2001;11(6):e3. DOI: https://doi.org/10.3171/foc.2001.11.6.4 
  2. Lee YK, Bedford JL, McNair HA, Hawkins MA. Comparison of deliverable IMRT and VMAT for spine metastases using a simultaneous integrated boost. Br J Radiol. 2013;86(1022):20120466. DOI: https://doi.org/10.1259/bjr.20120466 
  3. Chang KH. A comparison of patient-specific Delivery Quality Assurance(DQA) devices in radiation therapy. Journal of Radiological Science and Technology. 2023;46(3):231-8. DOI: https://doi.org/10.17946/JRST.2023.46.3.231 
  4. Matsumura A, Hoshi M, Takami M, Tashiro T, Nakamura H. Radiation therapy without surgery for spinal metastases: Clinical outcome and prognostic factors analysis for pain control. Global Spine J. 2012;2(3):137-42. DOI: https://doi.org/10.1055/s0032-1326948 
  5. Um KC, Kim GJ, Back GM. The effect of volume reduction on computed treatment planning during head and neck IMRT and VMAT. Journal of Radiological Science and Technology. 2023;46(3):239-46. DOI: https://doi.org/10.17946/JRST.2023.46.3.239 
  6. Wu QJ, Yoo S, Kirkpatrick JP, Thongphiew D, Yin FF. Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment. Int J Radiat Oncol Biol Phys. 2009;75(5):1596-604. DOI: https://doi.org/10.1016/j.ijrobp.2009.05.005 
  7. Jin JY, Chen Q, Jin R, Rock J, Anderson J, Li S, et al. Technical and clinical experience with spine radiosurgery: A new technology for management of localized spine metastases. Technol Cancer Res Treat. 2007;6(2):127-33. DOI: https://doi.org/10.1177/153303460700600209 
  8. Yin FF, Ryu S, Ajlouni M, Zhu J, Yan H, Guan H, et al. A technique of intensity-modulated rediosurgery(IMRS) for spinal tumors. Med Phys. 2002;29(12):2815-22. DOI: https://doi.org/10.1118/1.1521722 
  9. Ryu S, Yin FF, Rock J, Zhu J, Chu A, Kagan E, et al. Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer. 2003;97(8):2013-8. DOI: https://doi.org/10.1002/cncr.11296 
  10. Shiu AS, Change EL, Ye JS, Lii MF, Rhines LD, Mendel E, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: An emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys. 2003;57(3):605-13. DOI: https://doi.org/10.1016/S0360-3016(03)00792-2 
  11. Sohn S, Chung CK. The role of stereotactic radiosurgery in metastasis to the spine. J Korean Neurosurg Soc. 2012;51(1):1-7. DOI: https://doi.org/10.3340/jkns.2012.51.1.1 
  12. Dempsey JF, Romeijn HE, Li JG, Low DA, Palta JR. A fourier analysis of the dose grid resolution required for accurate IMRT fluence map optimization. Med Phys. 2005;32(2):380-8. DOI: https://doi.org/10.1118/1.1843354 
  13. Abbatucci JS, Delozier T, Quint R, Roussel A, Brune D. Radiation myelopathy of the cervical spinal cord: Time, dose and volume factors. Int J Radiat Oncol Biol Phys. 1978;4(3-4):239-48. DOI: https://doi.org/10.1016/0360-3016(78)90144-X 
  14. Gao J, Liu X. Off-isocenter winston-lutz test for stereotactic radiosurgery/stereotactic body radiotherapy. Int'l J. of Medical Physics, Clinical Eng. and Radiation Oncology. 2016;5(2):154-61. DOI: http://dx.doi.org/10.4236/ijmpcero.2016.52017 
  15. Calvo-Ortega JF, Moragues-Femenia S, Laosa-Bello C. A closer look at the conventional Winston-Lutz test: Analysis in terms of dose. Rep Pract Oncol Radiother. 2019;24(5):421-7. DOI: http://doi.org/10.1016/j.rpor.2019.07.003 
  16. Yin FF, Ryu S, Ajlouni M, Yan H, Jin JY, Lee SW, et al. Image-guided procedures for intensity-modulated spinal radiosurgery. Technical note. J Neurosurg. 2004;101(3):419-24. DOI: https://pubmed.ncbi.nlm.nih.gov/15537199/ https://doi.org/10.3171/sup.2004.101.supplement3.0419
  17. Solberg TD, Boedeker KL, Fogg R, Selch MT, DeSalles AA. Dynamic arc radiosurgery field shaping: A comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys. 2001;49(5):1481-91. DOI: https://doi.org/10.1016/S0360-3016(00)01537-6 
  18. Benedict SH, Cardinale RM, Wu Q, Zwicker RD, Broaddus WC, Mohan R. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys. 2001;50(3):751-8. DOI: https://doi.org/10.1016/S0360-3016(01)01487-0 
  19. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35(1):310-7. DOI: https://doi.org/10.1118/1.2818738 
  20. Monk JE, Perks JR, Doughty D, Plowman PN. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1443-9. DOI: https://doi.org/10.1016/S0360-3016(03)01579-7 
  21. Jin JY, Yin FF, Ryu S, Ajlouni M, Kim JH. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys. 2005;32(2):405-11. DOI: https://doi.org/10.1118/1.1842911 
  22. Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M. Implications of a high-definition multi-leaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): A planning study. Radiat Oncol. 2009;10(4):22. DOI: https://doi.org/10.1186/1748-717X-4-22 
  23. Lee BR, Jeong SH, Chung KZ, Yoon MG, Park HC, Han Y, Jung SH. Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator. J Appl Clin Med Phys. 2019;20(10):101-10. DOI: https://doi.org/10.1002/acm2.12718 
  24. Goma C, Almeida IP, Verhaegen F. Revisiting the single-energy CT calibration for proton therapy treatment planning: A critical look at the stoichiometric method. Phys Med Biol. 2018;63(23):235011. DOI: https://doi.org/10.1088/1361-6560/aaede5 
  25. Yohannes I, Kolditz D, Langner O, Kalender WA. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning. Phys Med Biol. 2012;57(5):1173-90. DOI: https://doi.org/10.1088/0031-9155/57/5/1173 
  26. Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111-24. DOI: https://doi.org/10.1088/0031-9155/57/5/1173 
  27. Kang DJ, Shin YJ, Kang JK, Jung JY, Lee WJ, Baek TS, et al. Clinical risk evaluation using dose verification program of brachytherapy for cervical cancer. Journal of Radiological Science and Technology. 2022;45(6):553-60. DOI: https://doi.org/10.17946/JRST.2022.45.6.553 
  28. Kang DJ, Shin YJ, Jeong SH, Jung JY, Lee HJ, Lee BR. Development of clinical application program for radiotherapy induced cancer risk calculation using Monte Carlo engine in volumetric-modulated arc therapy. Radiat Oncol. 2021;16:108. DOI: https://doi.org/10.1186/s13014-020-01722-0 
  29. Zakjevskii VV, Knill CS, Rakowski JT, Snyder MG. Development and evaluation of an end-to-end test for head and neck IMRT with a novel multiple-dosimetric modality phantom. J Appl Clin Med Phys. 2016;17(2):497-510. DOI: https://doi.org/10.1120/jacmp.v17i2.5705 
  30. Narayanasamy G, Desai D, Maraboyina S, Penagaricano J, Zwicker R, Johnson EL. A dose falloff gradient study in rapidarc planning of lung stereotactic body radiation therapy. J Med Phys. 2018;43(3):147-54. DOI: https://doi.org/10.4103/jmp.JMP_38_18