DOI QR코드

DOI QR Code

BER Performance Analysis of Strongest Channel Gain User for IRS NOMA with Rician Fading

  • Kyuhyuk Chung (Department of Software Science, Dankook University)
  • Received : 2023.10.03
  • Accepted : 2023.10.13
  • Published : 2023.12.31

Abstract

Increasing demand for increasing higher data rate in order to solve computationally tasks timely and connecting many user equipment simultaneously have requested researchers to develop novel technology in the area of mobile communications. Intelligent reflecting surface (IRS) have been enabling technologies for commercialization of the fifth generation (5G) networks and the sixth generation (6G) systems. In this paper, we investigate a bit-error rate (BER) analysis on IRS technologies for non-orthogonal multiple access (NOMA) systems. First, we derive a BER expression for IRS-NOMA systems with Rician fading channels. Then, we validate the BER expression by Monte Carlo simulations, and show numerically that BER expressions are in good agreement with simulations. Moreover, we investigate the BER of IRS-NOMA systems with Rician fading channels for various numbers of IRS elements, and show that the BERs improve as the number of IRS elements increases.

Keywords

References

  1. L. Chettri and R. Bera, "A comprehensive survey on internet of things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020. DOI: https://doi.org/10.1109/JIOT.2019.2948888 
  2. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013. DOI: https://doi.org/10.1109/VTCSpring.2013.6692652 
  3. Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016. DOI: https://doi.org/10.1109/TVT.2015.2480766 
  4. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519 
  5. E. C. Strinati et al., "6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42-50, Sept. 2019. DOI: https://doi.org/10.1109/MVT.2019.2921162 
  6. Q. Wu and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming," IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394-5409, Nov. 2019. DOI: https://doi.org/10.1109/TWC.2019.2936025 
  7. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157-4170, Aug. 2019. DOI: https://doi.org/10.1109/TWC.2019.2922609 
  8. Q. Wu and R. Zhang, "Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network," IEEE Commun. Mag., vol. 58, no. 1, pp. 106-112, Jan. 2020. DOI: https://doi.org/10.1109/MCOM.001.1900107 
  9. K. Chung, "Performance Analysis for Weaker Channel User in Non-Uniform Source SSC NOMA with Novel BTS," International Journal of Advanced Smart Convergence (IJASC), vol. 11, no. 1, pp. 36-41, Mar. 2022. DOI: http://dx.doi.org/10.7236/IJASC.2022.11.1.36 
  10. K. Chung, "A Tight Upper Bound on Capacity of Intelligent Reflecting Surface Transmissions Towards 6G Networks," International Journal of Advanced Smart Convergence (IJASC), vol. 11, no. 2, pp. 205-210, June. 2022. DOI: http://dx.doi.org/10.7236/IJASC.2022.11.2.205 
  11. Q. Tao, J. Wang and C. Zhong, "Performance Analysis of Intelligent Reflecting Surface Aided Communication Systems," IEEE Communications Letters, vol. 24, no. 11, pp. 2464-2468, Nov. 2020. DOI: http://dx.doi.org/10.1109/LCOMM.2020.3011843.