Acknowledgement
This research was supported by the Basic Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2021R1I1A3057 800), and the results were supported by the Regional Innovation Strategy (RIS) through the NRF funded by the Ministry of Education (MOE) (2021RIS-004).
References
- B. D. Kim, S. H. Park, S. H. Lee, E. Khoshimjonov, D. S. Kum, J. S. Kim, J. S. Kim, and J. W. Choi, "LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of Dynamic Agents," in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville: TN, pp. 14631-14640, 2021. DOI: 10.1109/CVPR46437.2021.01440.
- Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, "MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction," Proceedings of the Conference on Robot Learning, vol. 100, pp. 86-99, 2020. DOI: 10.48550/arXiv.1910.05449.
- T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, "CoverNet: Multimodal Behavior Prediction Using Trajectory Sets," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: WA, pp. 14062-14071, 2020. DOI: 10.1109/CVPR42600.2020.01408.
- H. Cui, Vl. Radosavljevic, F-C. Chou, T-H. Lin, T. Nguyen, T-K. Huang, J. Schneider, and N. Djuric, "Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks," in 2019 International Conference on Robotics and Automation (ICRA), Montreal: QC, pp. 2090-2096, 2019. DOI: 10.1109/ICRA.2019.8793868.
- S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis, "Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 33-47, Jan. 2022. DOI: 10.1109/TITS.2020.3012034.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," arXiv preprint arXiv:1512.03385, Dec. 2015. DOI: 10.48550/arXiv.1512.03385.
- S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, "Aggregated Residual Transformations for Deep Neural Networks," arXiv preprint arXiv:1611.05431, Nov. 2016. DOI: 10.48550/arXiv.1611.05431.
- S. Zagoruyko and N. Komodakis, "Wide Residual Networks," arXiv preprint arXiv:1605.07146, May 2016. DOI: 10.48550/arXiv.1605.07146.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," arXiv preprint arXiv:1512.03385, Dec. 2015. DOI: 10.48550/arXiv.1512.03385.
- M. Sandler, A. Howard, M. Zhu, A. Zhmognimov, and L-C. Chen, "MobileNetV2: Inverted Residual and Linear Bottlenecks," arXiv preprint arXiv:1801.04381, Jan. 2018. DOI: 10.48550/arXiv.1801.04381.
- nuScenes Contributors, nuScenes [Internet], Available: https://www.nuscenes.org/.
- D. P. Kingma, J. Ba, "Adam: A Method for Stochastic Optimization," arXiv preprint arXiv:1412.6980, Dec. 2014. DOI: 10.48550/arXiv.1412.6980.
- H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, "nuScenes: A multimodal dataset for autonomous driving," arXiv preprint arXiv: 1903.11027, Mar. 2019. DOI: 10.48550/arXiv.1903.11027.