DOI QR코드

DOI QR Code

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test

적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가

  • 윤석태 (동의대학교 함정적외선신호연구소)
  • Received : 2023.10.31
  • Accepted : 2023.11.28
  • Published : 2023.12.31

Abstract

Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

현대 함정은 외부로 방사되는 적외선 신호를 낮추기 위해 폐기관에 적외선 신호저감 장치(Infra-Red Signature Suppression system, IRSS)를 설치한다. 그리고 함정은 생의 주기가 매우 긴 전략 자산으로 탑재 장비들의 성능에 대한 높은 신뢰성을 충분히 확보해야 한다. 따라서, IRSS와 같은 장비들은 설계 단계에서 모형시험을 통해 성능평가를 하고 있다. IRSS의 모형시험에서는 다양한 계측기기들이 사용된다. 그러므로, 모형시험 단계 이전에 계측기들의 신뢰성을 평가해야 한다. 본 연구에서는 IRSS 모형시험에 사용되는 계측 장비들의 신뢰성 평가에 관한 연구를 수행하였다. 시험 장비와 계측기는 열 풍동 시험기, 피토 튜브와 디지털 차압계, 열전대 센서 그리고 디지털 기록계가 사용되었다. 계측 결과 열 풍동 시험기의 풍속이 증가할수록 유동의 계측 편차가 감소하였으며, 열전대 센서의 온도는 사용 방법에 따라 반응 속도 및 민감도의 차이를 보였다.

Keywords

References

  1. G. J. Jang, Y. M. Choi, B. G. Ahn, T. W. Lim(2008). The Evaluation of Reliability for the High Pressure Hydrogen Storage System of Fuel cell Vehicle, The Korean Hydrogen and New Energy Society, 19(4).
  2. H. C. Moon, W. S. Noh, H. S. Ryu, J. H. Doh(2022). Deep Neural Network-Based Reliability Assessment on Fatigue Life of PLA Specimens Considering Unvertainty of Additive Manufacturing, International Journal of Reliability and Applications, 22(1), 37-47, https://doi.org/10.33162/JAR.2022.3.22.1.037
  3. H. W. Choi, Y. B. Kim, J. I. Yoon, C. H. Son, K. H. Choi(2017). Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid solar Air-water Heater, Journal of the Korean Solar Energy Society, 37(1), https://doi.org/10.7836/kses.2017.37.1.047
  4. Jacob Fraden(2016), Handbook of Modern sensors : Physics, Designs, Applications, Springer Link.
  5. M.S. Yang, J. H. Chung, C. H. Bai, J. H. Kim, S. M. Oh, C. S. Kim, J. S. Nam, J. S. Shim(2022), Accelerated Life Test for Leveling Device of Automobile Headlamp, The Korean Society of Mechanical Engineers, https://doi.org/10.3795/KSME-A.2022.46.2.119
  6. Roy Billinton, Ronald N. Allan(2012), Reliability Evaluation of Engineering Systems, Springer Link.
  7. Roy Billinton, Ronald N. Allan(2014), Reliability Evaluation of Power Systems, Springer Link.
  8. S. T. Yoon, Y. J. Cho, D. E. Ko(2017). A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval ship, Journal of the Korea Academia Industrial cooperation Society, 18(11), https://doi.org/10.5762/KAIS.2017.18.11.740
  9. Y. H. Lee, J. Y. Kim, K. S. Moon, K. S. Lee(2021). A Study on Stockpile Reliability Program for Effective Life Cycle Management of Domestically Developed Missile, Journal of the Korea Association of Defencse Industry Studies, 28(1), 81-91, https://doi.org/10.52798/KADIS.2021.28.1.7
  10. Y. J. Kim, E. S. Wang, B. J. Lee, H. K. Shin, E. J. Lee, E. C. Kang(2021). A Thermal Performance Rliability Study on A Solar Air Collector depending on Ambient Temperature Variation, Journal of the Korean Solar Energy Society, 41(3), 139-147, https://doi.org/10.7836/kses.2021.41.3.139