Acknowledgement
본 연구는 2022년 교육부의 재원으로 지역대학우수과학자지원사업(NRF-2022R1I1A3071407)과 2020년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설 장비진흥센터와 (2019R1A6C1010042), 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임(S3316896).
References
- M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964). https://doi.org/10.1038/2041050a0
- W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998). https://doi.org/10.1557/JMR.1998.0015
- T. M. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures, Biomaterials, 23, 1283-1293 (2002). https://doi.org/10.1016/S0142-9612(01)00243-5
- D.-M. Liu, Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic, J. Mater. Sci., 15, 419-421 (1996). https://doi.org/10.1007/BF00277185
- T. M. Chu, J. W. Halloran, S. J. Hollister, and S. E. Feinberg, Hydroxyapatite implants with designed internal architecture, J. Mater. Sci. Mater. Med., 12, 471-478 (2001). https://doi.org/10.1023/A:1011203226053
- K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
- A. Corami, S. Mignardi, and V. Ferrini, Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite, J. Colloid Interface Sci., 317, 402-408 (2008). https://doi.org/10.1016/j.jcis.2007.09.075
- K.-Y. Kwon, E. Wang, A. Chung, N. Chang, and S.-W. Lee, Effect of salinity on hydroxyapatite dissolution studied by atomic force microscopy, J. Phys. Chem. C, 113, 3369-3372 (2009).
- K. Y. Kwon, E. Wang, N. Chang, and S. W. Lee, Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces, Langmuir, 25, 7205-7208 (2009). https://doi.org/10.1021/la900824n
- J. W. Jaworski, S. Cho, Y. Kim, J. H. Jung, H. S. Jeon, B. K. Min, and K.-Y. Kwon, Hydroxyapatite supported cobalt catalysts for hydrogen generation, J. Colloid Interface Sci., 394, 401-408 (2013). https://doi.org/10.1016/j.jcis.2012.11.036
- D. Kim, Y. Kim, K. Jung, M. Y. Choi, M. Park, B. Y. Lee, T. H. Kim, and K.-Y. Kwon, Ruthenium-incorporated hydroxyapatites for the oxidation of alcohols and amines using molecular oxygen as an oxidant, Bull. Korean. Chem. Soc., 36, 1-2 (2015). https://doi.org/10.1002/bkcs.10006
- E. Pyo, Y. Kim, J. B. Park, and K.-Y. Kwon, A silver-doped hydroxyapatite for an active sunscreen material, Bull. Korean. Chem. Soc., 37, 1395-1396 (2016). https://doi.org/10.1002/bkcs.10902
- X. Jin, J. Zhuang, Z. Zhang, H. Guo, and J. Tan, Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH, J. Colloid Interface Sci., 443, 125-130 (2015). https://doi.org/10.1016/j.jcis.2014.12.010
- R. Gonzalez-McQuire, J.-Y. Chane-Ching, E. Vignaud, A. Lebugle, and S. Mann, Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem., 14, 2277-2281 (2004). https://doi.org/10.1039/b400317a
- H. Zhang and M. W. Grinstaff, Recent advances in glycerol polymers: Chemistry and biomedical applications, Biomaterials, 35, 1906-1924 (2014).
- A. C. Tas, Molten salt synthesis of calcium hydroxyapatite whiskers, J. Am. Ceram. Soc., 84, 295-300 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00653.x