DOI QR코드

DOI QR Code

Effect of Experimental Factors on Reduction of Nitrogen Compounds Contained in Crude Methylnaphthalene Oil by Formamide Extraction

포름아미드 추출에 의한 조제 메틸나프탈렌유에 함유된 질소화합물의 저감에 관한 실험인자의 영향

  • Su Jin Kim (Department of Chemical & Biological Engineering, Chungwoon University)
  • 김수진 (청운대학교 화학생명공학과)
  • Received : 2023.09.13
  • Accepted : 2023.10.20
  • Published : 2023.12.10

Abstract

The crude methylnaphthalene oil (CMNO) contains nitrogen compounds (NCs) such as quinoline (QU), isoquinoline (IQU), and indole (IN). These NCs in the CMNO are treated as impurities contained in the CMNO due to contamination of the atmospheric environment and unpleasant odors. In order to improve the quality of CMNO, this study examined the effect of extraction experimental factors on the reduction of NCs contained in CMNO using CMNO as a raw material and an aqueous formamide solution as a solvent, respectively. The increase in the volume ratio of solvent to feed in initial (S/F)0 in initial increased the distribution coefficient of NCs and the selectivity of NCs in reference to 2-methylnaphthalene (2MNA). Additionally, an increase in operating temperature (T) increased the distribution coefficient of NCs but conversely decreased selectivity. The compositions of QU, IQU, and IN in the raffinate oil recovered through equilibrium extraction under a constant condition (volume fraction of water to solvent in initial (yw,0) = 0.1, (S/F)0 = 9, T = 303 K, liquid-liquid contacting time = 72 h) were reduced by about 58.5 wt%, 61.9 wt%, and 73.4 wt%, respectively, compared to those of CMNO. The formamide extraction method in this study was expected to be an effective reduction method for NCs contained in CMNO.

조제 메틸나프탈렌유(CMNO) 중에는 퀴놀린(QU), 이소퀴놀린(IQU)과 인돌(IN)과 같은 질소화합물(NCs)이 함유되어 있다. CMNO 중의 이들 NCs는 대기환경을 오염시키고 불쾌한 냄새로 인해 CMNO에 함유된 불순물로서 취급되고 있다. CMNO의 품질향상을 위해서, 본 연구는 원료로서 CMNO를, 용매로서 포름아미드 수용액을 각각 사용하여 CMNO 중에 함유된 NCs의 저감에 관한 추출 실험인자의 영향을 검토했다. 초기 원료에 대한 용매의 체적비(S/F)0의 증가는 NCs의 분배계수와 2-메칠나프탈렌(2MNA)을 기준한 NCs의 선택도를 증가시켰다. 또한 조작 온도의 상승은 NCs의 분배계수를 증가시켰으나, 역으로 선택도를 감소시켰다. 일정한 조건(초기 용매에 함유된 물의 체적분율(yw,0) = 0.1, (S/F)0 = 9, T = 303 K, 액-액 접촉시간(t) = 72 h)하의 평형추출을 통해 회수된 추잔유 중의 QU, IQU와 IN의 조성은 CMNO에 비해 각각 약 58.5 wt%, 61.9 wt%와 73.4 wt% 저감되었다. 본 연구의 포름아미드 추출법은 CMNO에 함유된 NCs의 유효한 저감법으로 기대되었다.

Keywords

Acknowledgement

본 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1I1A3061492).

References

  1. K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Removal and recovery of quinoline bases from methylnaphthalene oil in a semi-coninuous supercritical CO2 separation apparatus with a fixed bed of supported aluminum sulfate, Ind. Eng. Chem. Res., 34, 4118-4124 (1995). https://doi.org/10.1021/ie00038a056
  2. H. C. Kang and S. J. Kim, Experimental study on reduction of nitrogen-containing compounds contained in crude methylnaphthalene oil by solvent extraction (II), Appl. Chem. Eng., 33, 477-481 (2022).
  3. S. J. Kim, Upgrading of wash oil through reduction of nitrogen-containing compounds, Processes, 9, 1869-1877 (2021). https://doi.org/10.3390/pr9111869
  4. Y. Ji, Y. Hou, S. Ren, and W. Wu, Highly efficient separation of indole from model wash oil using tetraethyl ammonium amino acid ionic liquids, Sep. Purif. Technol., 258, 117997 (2021).
  5. K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Capture and recovery of indole from methylnaphthalene oil in a coninuous supercritical CO2 extraction apparatus over a fixed bed of anion-exchange resin, Ind. Eng. Chem. Res., 35, 335-337 (1996). https://doi.org/10.1021/ie950284+
  6. S. J. Kim, Purification of indole contained in wash oil by combination of extraction and crystallization (Part 1: Recovery and concentration of indole contained in wash oil by solvent extraction), Molecules, 27, 5331 (2022).
  7. Y. Mamoru and K. Tomonori, Separation and purification of indole from coal tar by supercritical fluid extraction, J. Chem. Eng. Jpn., 26, 153-158 (1993). https://doi.org/10.1252/jcej.26.153
  8. R. H. Xiao and W. M. Gao, Study on the recovery of indole from coal tar wash oil, Coal Convers., 21, 59-61 (1998).
  9. K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, Solvent extraction of nitrogen compounds from a coal tar fraction. (Part 1). Effect of extraction conditions on the extraction rate and the selectivities of nitrogen compounds, J. Jpn. Pet. Inst., 33, 250-254 (1990). https://doi.org/10.1627/jpi1958.33.250
  10. R. Egashira and M. Nagai, Separation of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction by solvent extraction, J. Jpn Pet. Inst., 43, 339-345 (2000). https://doi.org/10.1627/jpi1958.43.339
  11. S. J. Kim and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Technol., 40, 2095-2109 (2005). https://doi.org/10.1081/SS-200068488
  12. Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Solvent extraction of nitrogen compounds from coal liquids, Fuel, 70, 765-769 (1991). https://doi.org/10.1016/0016-2361(91)90076-M
  13. D. Xu, M. Zhang, J. Gao, L. Zhang, S. Zhou, and Y. Wang, Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study, Chem. Eng. Commun., 206, 1199-1217 (2019). https://doi.org/10.1080/00986445.2018.1552855
  14. T. Jiao, C. Ren, S. Lin, L. Zhang, X. Xu, Y. Zhang, W. Zhang, and P. Liang, The extraction mechanism research for the separation of indole through the formation of deep eutectic solvents with quaternary ammonium salts, J. Mol. Liq., 347, 118325 (2022).
  15. P. Gao, J. Zhang, Z. Guo, J. Gao, D. Xu, Y. Ma, L. Zhang, and Y. Wang, Experimental and quantum chemical calculations investigations of morpholine-based ionic liquids as extractants for efficient extraction of nitrogen heterocyclic neutral compounds, Fuel, 333, 126446 (2023).
  16. Q. Liu, T. Zhang, P. Gao, J. Gao, D. Xu, P. Zhao, L. Zhang, and Y. Wang, Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation, J. Environ. Chem. Eng., 9, 105971 (2021).
  17. L. Zhang, D. Xu, J. Gao, S. Zhou, L. Zhao, and Z. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel, 194, 27-35 (2017). https://doi.org/10.1016/j.fuel.2016.12.095
  18. S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143
  19. I. Mochida, Y. Q. Fei, and K. Sakanishi, Capture and recovery of basic nitrogen species in coal tar pitch, using nickel sulfate as adsorbent, Chem. Lett., 515-518 (1990).
  20. I. Uemasu, Effect of methanol-water mixture solvent on concentration of indole in coal tar using β-cyclodextrin as complexing agent, J. Jpn Pet. Inst., 34, 371-374 (1991). https://doi.org/10.1627/jpi1958.34.371
  21. I. Uemasu and T. Nakayama, Concentration of indole in coal tar using α-cyclodextrin as the host for inclusion complexation, J. Inclus. Phenom. Molec. Recogn. Chem., 7, 327-331 (1989). https://doi.org/10.1007/BF01076986