DOI QR코드

DOI QR Code

Technological Trends in Intelligent Cyber Range

지능형 사이버 훈련장의 기술 동향

  • 유재학 (네트워크.시스템보안연구실) ;
  • 구기종 (네트워크.시스템보안연구실) ;
  • 김익균 (정보보호연구본부) ;
  • 문대성 (네트워크.시스템보안연구실)
  • Published : 2022.08.01

Abstract

As the interest in achieving an intelligent society grows with the fourth industrial revolution's development, information and communications technologies technologies like artificial intelligence (AI), Internet of Things, virtual reality, information security, and blockchain technology are being actively employed in different fields for achieving an intelligent society. With these modifications, the information security paradigm in industrial and public institutions, like personal sensitive data, is quickly changing, and it is exposed to different cyber threats and breaches. Furthermore, as the number of cyber threats and breaches grows, so does the need for rapid detection and response. This demand can be satisfied by establishing cyber training programs and fostering experts that can improve cyber security abilities. In this study, we explored the domestic and international technology trends in cyber security education and training facilities for developing experts in information security. Additionally, the AI technology application in the cyber training ground, which can be established to respond to and deter cyber threats that are becoming more intelligent, was examined.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임[No. 2022-0-00961, 자가진화형 AI 기반 사이버 공방 핵심원천기술 개발].

References

  1. 강용구 외, "공격 기법 모델링을 통한 사이버 공격 시뮬레이터 설계 및 구현," 한국컴퓨터정보학회논문지, 제25권 제3호, 2020. 3, pp. 65-72. https://doi.org/10.9708/jksci.2020.25.03.065
  2. European Union Agency For Cybersecurity, "Cyber Europe 2022," June 2022, https://www.enisa.europa.eu/topics/cyber-exercises/cyber-europe-programme/cyber-europe-2022/
  3. 이주영, 문대성, 김익균, "사이버 공격 시뮬레이션 기술 동향," 전자통신동향분석, 제35권 제1호, 2020. 2, pp. 34-48. https://doi.org/10.22648/ETRI.2020.J.350104
  4. Statista 2022, "Size of the cybersecurity market worldwide from 2021 to 2026," June 2022, https://www.statista.com/statistics/595182/worldwide-security-as-a-service-market-size/
  5. H. Jiang, T. Choi, and R.K.L. Ko, "Pandora: A cyber range environment for the safe testing and deployment of autonomous cyber attack tools," in Security in Computing and Communications, vol. 1364, 2020, pp. 1-20.
  6. 김대식, 김용현, "사이버 레인지 운용 방안 연구," 인터넷정보학회 논문지, 제18권 제5호, 2017. 10, pp. 9-15.
  7. 최영한 외, "사이버위기 경보 기반 사이버 방어 훈련장 설계 및 구축 연구," 정보보호학회, 제30권 제5호, 2020. 10, pp. 805-821. https://doi.org/10.13089/JKIISC.2020.30.5.805
  8. 한국인터넷진흥원(KISA), Security-Gym, June 2022, https://www.kisa.or.kr/
  9. 과학기술정통부 보도자료, "사이버 침해대응 보안전문가 교육수강생 모집," 2022. 4. 13, https://www.msit.go.kr/bbs/view.do?sCode=user&mId=113&mPid=112&pageIndex=1&bbsSeqNo=94&nttSeqNo=3181618&searchOpt=ALL&searchTxt=%EA%B5%90%EC%9C%A1
  10. 전자신문, "[K-사이버방역 시대]<하>보안 기업 키우고 인력 늘리고…생태계 만든다," 2021. 4. 19, https://m.etnews.com/20210419000178?obj=Tzo4OiJzdGRDbGFzcyI6Mjp7czo3OiJyZWZlcmVyIjtOO3M6NzoiZm9yd2FyZCI7czoxMzoid2ViIHRvIG1vYmlsZSI7fQ%3D%3D
  11. 사이버작전사령부, 사이버작전사령부령, 2022. 6, https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%82%AC%EC%9D%B4%EB%B2%84%EC%9E%91%EC%A0%84%EC%82%AC%EB%A0%B9%EB%B6%80%EB%A0%B9
  12. 사이버안전훈련센터, 2022. 6, https://www.cstec.kr/cstec/kor/html/sub01/sub0101.html
  13. CyberGym, Israel, June 2022, https://www.cybergym.com/#section_1
  14. Raytheon Code Center, Raytheon Technologies, USA, June 2022, https://www.raytheon.com/cyber/capabilities/range
  15. National Cyber Range(NCR), USA, June 2022, https://www.peostri.army.mil/national-cyber-range-ncr
  16. CyberRange-Airbus CyberSecurity, EU, June 2022, https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
  17. CyberBattleSim, Microsoft, USA, June 2022, https://www.microsoft.com/en-us/research/project/cyberbattlesim/
  18. CyberBattleSim, github, June 2022, https://github.com/microsoft/CyberBattleSim/blob/main/docs/quickintro.md
  19. A. Chowdhary et al., "Autonomous security analysis and penetration testing," in Proc. Int. Conf. Mobility, Sens. Netw. (MSN), (Tokyo, Japan), Dec. 2020, pp. 1-8.
  20. M.C. Ghanem and T.M. Chen, "Reinforcement learning for efficient network penetration testing," Information, vol. 11, no. 1, 2020, pp. 1-21. https://doi.org/10.3390/info11010001