DOI QR코드

DOI QR Code

Research Trends on Distributed Storage Technology for Blockchain Transaction Data

블록체인 트랜잭션 데이터 분산 저장 기술 동향

  • Published : 2022.06.02

Abstract

Recently, the blockchain technology, which can decentralize business ecosystems using secure transactions without trusted intermediaries, has been spotlighted. Full nodes play an important role in maintaining decentralization in that they independently verify transactions using their full historical transaction data. However, the storage requirement of a full node for storing historical data is continuously increasing, and thus, has become harder for users to run a full node due to the heavy price for storage costs. In this paper, we investigate research trends on reducing the costs of storing blockchain transaction data so that nodes with low storage requirements can be used in the blockchain network.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[No. 2021-0-00136, 다양한 산업 분야 활용성 증대를 위한 대규모/대용량 블록체인 데이터 고확장성 분산 저장 기술 개발].

References

  1. BitInfoCharts, "Cryptocurrency statistics," Available from: https://bitinfocharts.com/
  2. S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," Decentralized Bus. Rev., 2008.
  3. E. Developer Team, "Electrum," 2017, Available from: electrum.org
  4. E. Palm et al., "Selective blockchain transaction pruning and state derivability," in Proc. IEEE Crypto Vall. Conf. Blockchain Technol. (CVCBT), (Zug, Switzerland), June 2018.
  5. R. Matzutt et al., "CoinPrune: Shrinking bitcoin's block-chain retrospectively," IEEE Trans. Netw. Service Manag., vol. 18, no. 3, 2021.
  6. Locuschain, "Locus chain technical whitepaper," Nov. 2019, Available form: https://www.locuschain.com/upload/file/20211118_113627_445.pdf
  7. J. Wang and H. Wang, "Monoxide: Scale out blockchains with asynchronous consensus zones," in Proc. USENIX Symp. Networked Syst. Des. Implementation (NSDI), (Boston, MA, USA), Feb. 2019, pp. 95-112.
  8. L. Luu et al., "A secure sharding protocol for open blockchains," in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., (Vienna, Austria), Oct. 2016.
  9. E. Kokoris-Kogias et al., "Omniledger: A secure, scaleout, decentralized ledger via sharding," in Proc. IEEE Symp. Secur. Priv. (S&P), (San Francisco, CA, USA), May 2018.
  10. M. Zamani et al., "RapidChain: Scaling blockchain via full sharding," in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., (Toronto, Canada), Oct. 2018, pp. 931-948.
  11. V. Buterin, "Ethereum: Platform review," Opportunities and Challenges for Private and Consortium Blockchains, 2016.
  12. H. Dang et al., "Towards scaling blockchain systems via sharding," in Proc. Int. Conf. Manag. Data, (Amsterdam, Netherlands), June 2019, pp. 123-140.
  13. Y. Kaneko et al., "DHT clustering for load balancing considering blockchain data size," in Proc. Int. Symp. Comput. Netw. Workshops, (Takayama, Japan), Nov. 2018, pp. 71-74.
  14. Y. Hassanzadeh-Nazarabadi et al., "LightChain: A DHT-based blockchain for resource constrained environments," arXiv preprint, CoRR, 2019, arXiv: 1904.00375.
  15. R. Abe et al., "Blockchain storage load balancing among DHT clustered nodes," arXiv preprint, CoRR, 2019, arXiv: 1902.02174.
  16. B. Yu et al., "Virtual block group: A scalable blockchain model with partial node storage and distributed hash table," Comput. J., vol. 63, no. 10, 2020, pp. 1524- 1536. https://doi.org/10.1093/comjnl/bxaa046
  17. D. Ford et al., "Availability in globally distributed storage systems," in Proc. USENIX Symp. Oper. Syst. Des. Implementation (OSDI), (Vancouver, Canada), Oct. 2010, pp. 61-74.
  18. C. Huang et al., "Erasure coding in windows azure storage," in Proc. USENIX Annu. Tech. Conf., (Boston, MA, USA), June 2012, pp. 2-12.
  19. K.V. Rashmi et al., "A solution to the network challenges of data recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster," in Proc. USENIX Workshop Hot Topics Storage File Syst. (HotStorage), (San Jose, CA, USA), June 2013, pp. 1-5.
  20. M. Dai et al., "A low storage room requirement framework for distributed ledger in blockchain," IEEE Access, vol. 6, 2018, pp. 22970-22975. https://doi.org/10.1109/access.2018.2814624
  21. D. Perard et al., "Erasure code-based low storage blockchain node," in Proc. IEEE Int. Conf. Internet Things (iThings) & IEEE Green Comput. Commun. (GreenCom) & IEEE Cyber, Phys. Soc. Comput. (CPSCom) & IEEE Smart Data (SmartData), (Halifax, Canada), July 2018.
  22. X. Qi et al., "BFT-store: Storage partition for permissioned blockchain via erasure coding," in Proc. IEEE Int. Conf. Data Eng. (ICDE), (Dallas, TX, USA), Apr. 2020.
  23. S. Li et al., "Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously," IEEE Trans. Inf. Forensics Secur., vol. 16, 2020, pp. 249-261. https://doi.org/10.1109/tifs.2020.3009610
  24. S. Kadhe, J. Chung, and K. Ramchandran, "Sef: A secure fountain architecture for slashing storage costs in blockchains," arXiv preprint, CoRR, 2019, arXiv: 1906.12140.
  25. H. Wu et al., "Distributed error correction coding scheme for low storage blockchain systems," IEEE Internet Things J., vol. 7, no. 8, 2020, pp. 7054-7071. https://doi.org/10.1109/jiot.2020.2982067
  26. A. Tiwari and V. Lalitha, "Secure raptor encoder and decoder for low storage blockchain," in Proc. Int. Conf. Commun. Sys. Netw. (COMSNETS), (Bangalore, India), Jan. 2021.
  27. D. Mitra and L. Dolecek, "Patterned erasure correcting codes for low storage-overhead blockchain systems," in Proc. Asilomar Conf. Signals, Syst., Comput., (Pacific Grove, CA, USA), Nov. 2019.
  28. M. Luby, "LT codes," in Proc. Ann. IEEE Symp. Found. Comput. Sci., (Vancouver, Canada), Nov. 2002.
  29. A. Shokrollahi, "Raptor codes," IEEE Trans. Inf. Theory, vol. 52, no. 6, 2006, pp. 2551-2567. https://doi.org/10.1109/TIT.2006.874390
  30. T. Ometoruwa, "Solving the blockchain trilemma: Decentralization, security & scalability," May 2018, Available from: https://www.coinbureau.com/analysis/solving-blockchain-trillemma