DOI QR코드

DOI QR Code

우주방사선 환경 ICT 소자 영향 및 개발 동향

ICT Device Impacts and Development Trends on Cosmic Radiation Environment

  • 이윤식 (나노전자원소자연구실) ;
  • 정성근 ((주)엠아이디) ;
  • 황인록 ((주)SKHynix 선행품질&분석/신뢰성팀) ;
  • 양용석 (나노전자원소자연구실) ;
  • 이명래 (나노전자원소자연구실) ;
  • 서동우 (소재부품원천연구본부)
  • 발행 : 2022.04.01

초록

Cosmic radiation environments having extremely high-energy particles and photons cause severe malfunctions of electrical components in space and terrestrial regions. In this study, we revisit basic knowledge on radiation effects in ICT electrical devices, such as single event effect, total ionizing dose, and displacement damage. To avoid such soft errors and system failures, we introduce essential technical approaches from the perspectives of materials, layouts, circuits, and systems, including current research trends. By considering several techniques and Space EEE part standards, we suggest possible directions that can invoke New Space Era technology.

키워드

과제정보

본 연구 논문은 한국전자통신연구원 연구운영지원사업의 일환으로 수행되었음[21YB2810, 저차원 나노물질을 이용한 우주환경 내방사선 소자 및 경량 차폐 소재 개발].

참고문헌

  1. H.J. Barnaby, "Total-ionizing-dose effects in modern CMOS technologies," IEEE Trans. Nucl. Sci., vol. 53, no. 6, 2006, pp. 3103-3121. https://doi.org/10.1109/TNS.2006.885952
  2. 한국원자력연구원 첨단방사선연구소, https://www.kaeri.re.kr/arti/
  3. 한국원자력연구원 양성자과학연구단, https://komac.kaeri.re.kr:448/
  4. M. Bucher et al., "Total ionizing dose effects on analog performance of 65 nm bulk CMOS with enclosed-gate and standard layout," in Proc. IEEE Int. Conf. Microelectron. Test Structures (ICMTS), (Austin, TX, USA), Mar. 2018.
  5. A.T. Kelly et al., "Differential analog layout for improved ASET tolerance," IEEE Trans. Nucl. Sci., vol. 54, no. 6, 2007, pp. 2053-2059. https://doi.org/10.1109/TNS.2007.910124
  6. T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened memory design for submicron CMOS technology," IEEE Trans. Nucl. Sci., vol. 43, no. 6, 1996, pp. 2874-2878. https://doi.org/10.1109/23.556880
  7. O. Ruano, P. Reviriego, and J.A. Maestro, "Automatic insertion of selective TMR for SEU mitigation," in Proc. Eur. Conf. Radiat. Its Eff. Components Syst., (Jyvaskyla, Finland), Sept. 2008.
  8. S. Tambatkar et al., "Error detection and correction in semiconductor memories using 3D parity check code with hamming code," in Proc. Int. Conf. Commun. Signal Process. (ICCSP), (Chennai, India), Apr. 2017.
  9. S.J. Pearton et al., "Ionizing radiation damage effects on GaN devices," ECS J. Solid State Sci. Technol., vol. 5 no. 2, 2015, pp. 35-60.
  10. J.R. Schwank e t al., "Radiation effects in SOI technologies," IEEE Trans. Nucl. Sci., vol. 50. no. 3, 2003, pp. 522-538. https://doi.org/10.1109/TNS.2003.812930
  11. K . Hirose and D . Kobayashi, "Advantages and disadvantages of SOI in terms of radiation tolerance," in Proc. IEEE SOI-3D-Subthreshold Microelectron. Technol. Unified Conf., (Burlingame, CA, USA), Oct. 2018, pp. 1-4.
  12. F. Faccio and G. Cervelli, "Radiation-induced edge effects in deep submicron CMOS transistors," IEEE Trans. Nucl. Sci., vol. 52, no. 6, 2005, pp. 2413-2420. https://doi.org/10.1109/TNS.2005.860698
  13. M.P. King et al., "Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance," IEEE Trans. Nucl. Sci., vol. 61, no. 1, 2016, pp. 285-292.
  14. T. Vogl et al., "Radiation tolerance of two-dimensional material-based devices for space applications," Nat. Commun., vol. 10, 2019, pp. 1-10. https://doi.org/10.1038/s41467-018-07882-8
  15. A.V. Krasheninnikov, "Are two-dimensional materials radiation tolerant?," Nanoscale Horiz., vol. 5, 2020, pp. 1447-1452. https://doi.org/10.1039/d0nh00465k
  16. S. Mondal et al., "Gamma-ray tolerant flexible pressure-temperature sensor for nuclear radiation environment," Adv. Mater. Technol., vol. 6, no. 4, 2021, article no. 2001039.
  17. S.H. Gwon et al., "Sewable soft shields for the γ-ray radiation," Sci. Rep., vol. 8, 2018, pp. 1-7.
  18. 장태성, 이주훈, "우주용 방사차폐 구조 국내 연구 동향," 항공우주산업기술동향, 제15권 제2호, 2017, pp. 109-117.
  19. I.H. Seo e t al., "Proto flight model design and implementation of mass memory unit for STSAT-2," J. Korean Soc. Aeron. Space, vol. 36, 2008, pp. 195-201.
  20. Harris Corp. "3D prints RF amplifiers using nano dimension's dragonfly pro," DE247 Digital Engineering, 2018, p. 9.
  21. S. Kety, "Mini-Cubes 3D Printed its first satellite in carbon-composite and it is ready for flight," 3D Adept Media, July 2020.
  22. https://3dprint.com/278887/3d-printing-and-the-future-of-space/