과제정보
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[No. 2022-0-00907, (2세부) AI Bots 협업 플랫폼 및 자기조직 인공지능 기술개발].
참고문헌
- Google AI Blog, Federated Learning: Collaborative Machine Learning without Centralized Training Data, 2017, https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
- 박준희 외, "IoT기반 초연결 공간 분산지능 기술," 전자통신동향분석, 제33권 제1호, 2018.
- L.E. Parker, "Distributed Intelligence: Overview of the field and its application in multi-robot systems," in AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems, AAAI Press, Menlo Park, CA, USA, 2007, pp. 1-6.
- M. Biswas, Beginning AI Bot Frameworks: Getting Started with Bot Development, Apress Berkeley, CA, USA, 2018.
- J. Duan et al., "A survey of embodied AI: From simulators to research tasks," IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 2, 2022.
- https://servisbot.com/5-use-cases-for-multi-bot-architecture/
- IITP, 인공지능 기술 청사진 2030, 2020. 12.
- W. Guo, J. Wang, and S. Wang, "Deep multimodal representation learning: A survey," IEEE Access, vol. 7, 2021, pp. 63373-63394. https://doi.org/10.1109/access.2019.2916887
- A. Baheti and S. Bhokre, Additive Learning Framework for Self Evolving AI, NVIDIA, 2018.
- T. Cieslewski, S. Choudhary, and D. Scaramuzza, "Data-efficient decentralized visual SLAM," in Proc. IEEE Int. Conf. Robot. Autom., (Brisbane, Australia), May 2018, pp. 2466-2473.
- P-Y. Lajoie et al., "DOOR-SLAM: Distributed, online, and outlier resilient SLAM for robotic teams," IEEE Robot. Autom. Lett., vol. 5, no. 2, 2020.
- M. Kegeleirs, G. Giorgio, and M. Birattari, "Swarm SLAM: Challenges and perspectives," Front. Robot. AI, vol. 8, 2021.
- Y. Chang et al., "Kimera-multi: A system for distributed multi-robot metric-semantic simultaneous localization and mapping," in Proc. IEEE Int. Conf. Robot. Autom., (Xi'an, China), May 2021, pp. 11210-11218.
- U. Jain et al., "Two body problem: Collaborative visual task completion," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., (Long Beach, CA, USA), June 2019, pp. 6689-6699.
- X. Liu et al., "Multi-agent embodied visual semantic navigation with scene prior knowledge," arXiv preprint, CoRR, 2021, aXiv: 2109.09531.
- Y. Rizk et al., "Cooperative heterogeneous multi-robot systems: A survey," ACM Comput. Surv., vol. 52, no. 2, 2019.
- U. Unnat et al., "A cordial sync: Going beyond marginal policies for multi-agent embodied tasks," in European Conference on Computer Vision, Springer, Cham, Switzerland, 2020, pp. 471-490.
- G.T. Papadopoulos e t al., "Towards open and expandable cognitive AI architectures for large-scale multi-agent human-robot collaborative learning," IEEE Access, vol. 9, 2021.
- R. Bernardo et al., "Planning robotic agent actions using semantic knowledge for a home environment," Intell. Robot., vol. 1, no. 2, 2021.
- K. Wang et al., "Visual semantic planning for service robot via natural language instructions," in Proc. IEEE China Autom. Congr. (CAC), (Beijing, China), Oct. 2021, pp. 793-798.
- J. Moon, "Plugin framework-based neuro-symbolic grounded task planning for multi-agent system," Sensors, vol. 21, no. 23, 2021.
- J. Francis et al., "Core challenges in embodied vision-language planning," J. Artif. Intell. Res., 2022.
- https://askforalfred.com/EAI22/
- S. Tan et al., "Multi-agent embodied question answering in interactive environments," in European Conference on Computer Vision, Springer, Cham, Switzerland, 2020, pp. 663-678.
- T.T. Nguyen et al., "Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications," IEEE Trans. Cybern., vol. 50, no. 9, 2020.
- L. Espeholt et al., "Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures," in Proc. Int. Conf. Mach. Learn., (Stockholm, Sweden), Jul. 2018, pp. 1407-1416.
- H. Mao et al., "Learning agent communication under limited bandwidth by message pruning," in Proc. AAAI Conf. Artif. Intell., (New York, NY, USA), Feb. 2020, pp. 5142-5149.
- E. Hejazi, "Multi-agent machine learning in self-organizing systems," Inf. Sci., vol. 581, 2021.
- S. Reddi et al., "Adaptive federated optimization," Int. Conf. Learn. Repersentation (ICLR), (Virtual Only), May 2021.
- A.G. Roy et al., "Braintorrent: A peer-to-peer environment for decentralized federated learning," arXiv preprint, CoRR, 2019, arXiv: 1905.06731.
- T. Winak and Z. Nochta, "An approach for peer-to-peer federated learning," in Proc. Ann. IEEE/IFIP Inter. Conf. Dependable Syst. Netw. Workshops (DSN-W), (Taipei, Taiwan), June 2021, pp. 150-157.
- https://echord.eu/saga.html
- 한경수, 정훈, "드론 물류 배송 서비스 동향," 전자통신동향분석, 제35권 제1호, 2020, pp. 71-79. https://doi.org/10.22648/ETRI.2020.J.350107
- 삼정KPMG 경제연구원, "하늘 위에 펼쳐지는 모빌리티 혁명, 도심 항공 모빌리티," 삼정 인사이트, 통권 제70호, 2020.
- https://en.wikipedia.org/wiki/Amazon_Robotics
- https://magazine.hankyung.com/business/article/202103114564b
- https://www.amazon.science/latest-news/amazonrobotics-see-robin-robot-arms-in-action