DOI QR코드

DOI QR Code

Controlling the Intensity Distribution of Light at the Output of a Multimode Optical Fiber Using a Polar-coordinate-based Transmission-matrix Method

극좌표 기반 투과 매트릭스 방법을 이용한 다중모드 광섬유 출력단에서의 빛의 세기 분포 제어

  • Park, Jaedeok (Department of Energy Systems Research, Ajou University) ;
  • Jo, Jaepil (Department of Physics, Ajou University) ;
  • Yoon, Jonghee (Department of Physics, Ajou University) ;
  • Yeom, Dong-Il (Department of Energy Systems Research, Ajou University)
  • 박재덕 (아주대학교 에너지시스템학과) ;
  • 조재필 (아주대학교 물리학과) ;
  • 윤종희 (아주대학교 물리학과) ;
  • 염동일 (아주대학교 에너지시스템학과)
  • Received : 2022.10.05
  • Accepted : 2022.11.03
  • Published : 2022.12.25

Abstract

We have conducted a study to control the light-intensity distribution at the output end of a multimode optical fiber via estimating the transmission matrix. A circularly arranged Hadamard eigenmode phase distribution was implemented using a spatial light modulator, and the transmission matrix of a multimode optical fiber was experimentally obtained using a four-phase method. Based on the derived transmission matrix, the spatial phase distribution of light incident upon the optical fiber was adjusted via the spatial light modulator in advance, to focus the light at a desired position at the optical fiber output. The light could be focused with an intensity up to 359.6 times as high as that of the surrounding background signal at a specific position of the multimode fiber's output end, and the intensity of the focused beam was on average 104.6 times as large as that of the background signal, across the area of the multimode fiber's core.

투과 매트릭스 방법을 이용하여 다중모드 광섬유 출력단에서 빛의 세기 분포를 제어하는 연구를 수행하였다. 공간 빛 변조기를 이용하여 원형으로 배치된 Hadamard 고유모드 위상분포를 실험적으로 구현하고, 네 가지 위상 값 변조 방법을 통하여 다중모드 광섬유의 투과 매트릭스를 실험적으로 도출하였다. 도출한 투과 매트릭스를 기반으로 광섬유에 입사하는 빛에 공간적인 위상 분포를 사전에 적용함으로써 광섬유 출력단의 원하는 위치에 빛을 집속하고자 하였다. 다중모드 광섬유 출력단 코어의 특정 위치에서 주변 배경 신호 대비 최대 359.6배 큰 세기로 빛을 집속할 수 있었으며 다중모드 광섬유 코어 영역 전반에 걸쳐 평균적으로 104.6배 향상된 값으로 빛을 집속할 수 있었다.

Keywords

Acknowledgement

이 논문은 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(UD210019ID).

References

  1. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average-power, high-energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002). https://doi.org/10.1007/s00340-002-1018-1
  2. L. V. Kotov, S. S. Aleshkina, M. M. Khudyakov, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, A. N. Guryanov, and M. M. Likhachev, "High-brightness multimode fiber lasers for resonant pumping," J. Light. Technol. 35, 4540-4546 (2017). https://doi.org/10.1109/JLT.2017.2748924
  3. Y. Wang, Y. Tang, S. Yan, and J. Xu, "High-power mode-locked 2 ㎛ multimode fiber laser," Laser Phys. Lett. 15, 085101 (2018). https://doi.org/10.1088/1612-202X/aac429
  4. R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, "Multimode random fiber laser for speckle-free imaging," IEEE J. Sel. Top. Quantum Electron. 25, 0900106 (2019).
  5. J. S. Park, E. J. Park, Y. J. Oh, H. Jeong, J. W. Kim, Y. Jung, K. Lee, Y. Lee, and J. Cho, "High-power Yb fiber laser with 3.0-KW output," Korean J. Opt. Photonics 32, 147-152 (2021). https://doi.org/10.3807/KJOP.2021.32.4.147
  6. Y. J. Oh, H. M. Park, J. S. Park, E. J. Park, J. P. Kim, H. Jeong, J. W. Kim, T. H. Kim, S. M. Jeong, K. H. Kim, and H. S. Yang, "High-power operation of a Yb fiber laser at 1018 nm," Korean J. Opt. Photonics 32, 209-214 (2021). https://doi.org/10.3807/KJOP.2021.32.5.209
  7. J. Li, Z. Wu, D. Ge, J. Zhu, Y. Tian, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, "Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection," Front. Optoelectron. 12, 31-40 (2019). https://doi.org/10.1007/s12200-018-0834-9
  8. S. Warm and K. Petermann, "Splice loss requirements in multimode fiber mode-division-multiplex transmission links," Opt. Express 21, 519-532 (2013). https://doi.org/10.1364/OE.21.000519
  9. J. Li, J. Hu, D. Zou, W. Wang, F. Li, Q. Sui, J. Zhou, X. Yi, and Z. Li, "Terabit mode division multiplexing discrete multitone signal transmission over OM2 multimode fiber," IEEE J. Sel. Top. Quantum Electron. 26, 4501308 (2020).
  10. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, "Resolution limits for imaging through multi-mode fiber," Opt. Express 21, 1656-1668 (2013). https://doi.org/10.1364/OE.21.001656
  11. G. P. J. Laporte, N. Stasio, C. Moser, and D. Psaltis, "Enhanced resolution in a multimode fiber imaging system," Opt. Express 23, 27484-27493 (2015). https://doi.org/10.1364/OE.23.027484
  12. D. Loterie, D. Psaltis, and C. Moser, "Bend translation in multimode fiber imaging," Opt. Express 25, 6263-6273 (2017). https://doi.org/10.1364/OE.25.006263
  13. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013). https://doi.org/10.1364/BOE.4.000260
  14. P. Jakl, M. Siler, J. Jezek, A. Cifuentes, J. Tragardh, P. Zemanek, and T. Cizmar, "Endoscopic imaging using a multimode optical fibre calibrated with multiple internal references," Photonics 9, 37 (2022). https://doi.org/10.3390/photonics9010037
  15. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, "Genetic algorithm optimization for focusing through turbid media in noisy environments," Opt. Express 20, 4840-4849 (2012). https://doi.org/10.1364/OE.20.004840
  16. Z. Wu, J. Luo, Y. Feng, X. Guo, Y. Shen, and Z. Li, "Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm," Opt. Express 27, 5570-5580 (2019). https://doi.org/10.1364/oe.27.005570
  17. E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthelemy, S. Wabnitz, and V. Couderc, "Wavefront shaping for optimized many-mode Kerr beam self-cleaning in graded-index multimode fiber," Opt. Express 27, 17311-17321 (2019). https://doi.org/10.1364/oe.27.017311
  18. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, "Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media," Phys. Rev. Lett. 104, 100601 (2010). https://doi.org/10.1103/PhysRevLett.104.100601
  19. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, "Controlling light through optical disordered media: transmission matrix approach," New J. Phys. 13, 123021 (2011). https://doi.org/10.1088/1367-2630/13/12/123021
  20. J. Xu, H. Ruan, Y. Liu, H. Zhou, and C. Yang, "Focusing light through scattering media by transmission matrix inversion," Opt. Express 25, 27234-27246 (2017). https://doi.org/10.1364/OE.25.027234
  21. R. Florentin, V. Kermene, A. Desfarges-Berthelemot, and A. Barthelemy, "Fast transmission matrix measurement of a multimode optical fiber with common path reference," IEEE Photonics J. 10, 7104706 (2018).
  22. S. Resisi, Y. Viernik, S. M. Popoff, and Y. Bromberg, "Wave-front shaping in multimode fibers by transmission matrix engineering," APL Photonics 5, 036103 (2020). https://doi.org/10.1063/1.5136334
  23. G. Huang, D. Wu, J. Luo, Y. Huang, and Y. Shen, "Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter," Opt. Express 28, 9487-9500 (2020). https://doi.org/10.1364/oe.389133