Acknowledgement
이 논문은 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(UD210019ID).
References
- J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average-power, high-energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002). https://doi.org/10.1007/s00340-002-1018-1
- L. V. Kotov, S. S. Aleshkina, M. M. Khudyakov, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, A. N. Guryanov, and M. M. Likhachev, "High-brightness multimode fiber lasers for resonant pumping," J. Light. Technol. 35, 4540-4546 (2017). https://doi.org/10.1109/JLT.2017.2748924
- Y. Wang, Y. Tang, S. Yan, and J. Xu, "High-power mode-locked 2 ㎛ multimode fiber laser," Laser Phys. Lett. 15, 085101 (2018). https://doi.org/10.1088/1612-202X/aac429
- R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, "Multimode random fiber laser for speckle-free imaging," IEEE J. Sel. Top. Quantum Electron. 25, 0900106 (2019).
- J. S. Park, E. J. Park, Y. J. Oh, H. Jeong, J. W. Kim, Y. Jung, K. Lee, Y. Lee, and J. Cho, "High-power Yb fiber laser with 3.0-KW output," Korean J. Opt. Photonics 32, 147-152 (2021). https://doi.org/10.3807/KJOP.2021.32.4.147
- Y. J. Oh, H. M. Park, J. S. Park, E. J. Park, J. P. Kim, H. Jeong, J. W. Kim, T. H. Kim, S. M. Jeong, K. H. Kim, and H. S. Yang, "High-power operation of a Yb fiber laser at 1018 nm," Korean J. Opt. Photonics 32, 209-214 (2021). https://doi.org/10.3807/KJOP.2021.32.5.209
- J. Li, Z. Wu, D. Ge, J. Zhu, Y. Tian, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, "Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection," Front. Optoelectron. 12, 31-40 (2019). https://doi.org/10.1007/s12200-018-0834-9
- S. Warm and K. Petermann, "Splice loss requirements in multimode fiber mode-division-multiplex transmission links," Opt. Express 21, 519-532 (2013). https://doi.org/10.1364/OE.21.000519
- J. Li, J. Hu, D. Zou, W. Wang, F. Li, Q. Sui, J. Zhou, X. Yi, and Z. Li, "Terabit mode division multiplexing discrete multitone signal transmission over OM2 multimode fiber," IEEE J. Sel. Top. Quantum Electron. 26, 4501308 (2020).
- R. N. Mahalati, R. Y. Gu, and J. M. Kahn, "Resolution limits for imaging through multi-mode fiber," Opt. Express 21, 1656-1668 (2013). https://doi.org/10.1364/OE.21.001656
- G. P. J. Laporte, N. Stasio, C. Moser, and D. Psaltis, "Enhanced resolution in a multimode fiber imaging system," Opt. Express 23, 27484-27493 (2015). https://doi.org/10.1364/OE.23.027484
- D. Loterie, D. Psaltis, and C. Moser, "Bend translation in multimode fiber imaging," Opt. Express 25, 6263-6273 (2017). https://doi.org/10.1364/OE.25.006263
- I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013). https://doi.org/10.1364/BOE.4.000260
- P. Jakl, M. Siler, J. Jezek, A. Cifuentes, J. Tragardh, P. Zemanek, and T. Cizmar, "Endoscopic imaging using a multimode optical fibre calibrated with multiple internal references," Photonics 9, 37 (2022). https://doi.org/10.3390/photonics9010037
- D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, "Genetic algorithm optimization for focusing through turbid media in noisy environments," Opt. Express 20, 4840-4849 (2012). https://doi.org/10.1364/OE.20.004840
- Z. Wu, J. Luo, Y. Feng, X. Guo, Y. Shen, and Z. Li, "Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm," Opt. Express 27, 5570-5580 (2019). https://doi.org/10.1364/oe.27.005570
- E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthelemy, S. Wabnitz, and V. Couderc, "Wavefront shaping for optimized many-mode Kerr beam self-cleaning in graded-index multimode fiber," Opt. Express 27, 17311-17321 (2019). https://doi.org/10.1364/oe.27.017311
- S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, "Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media," Phys. Rev. Lett. 104, 100601 (2010). https://doi.org/10.1103/PhysRevLett.104.100601
- S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, "Controlling light through optical disordered media: transmission matrix approach," New J. Phys. 13, 123021 (2011). https://doi.org/10.1088/1367-2630/13/12/123021
- J. Xu, H. Ruan, Y. Liu, H. Zhou, and C. Yang, "Focusing light through scattering media by transmission matrix inversion," Opt. Express 25, 27234-27246 (2017). https://doi.org/10.1364/OE.25.027234
- R. Florentin, V. Kermene, A. Desfarges-Berthelemot, and A. Barthelemy, "Fast transmission matrix measurement of a multimode optical fiber with common path reference," IEEE Photonics J. 10, 7104706 (2018).
- S. Resisi, Y. Viernik, S. M. Popoff, and Y. Bromberg, "Wave-front shaping in multimode fibers by transmission matrix engineering," APL Photonics 5, 036103 (2020). https://doi.org/10.1063/1.5136334
- G. Huang, D. Wu, J. Luo, Y. Huang, and Y. Shen, "Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter," Opt. Express 28, 9487-9500 (2020). https://doi.org/10.1364/oe.389133