DOI QR코드

DOI QR Code

BEST PROXIMITY POINT THEOREMS FOR CYCLIC 𝜃-𝜙-CONTRACTION ON METRIC SPACES

  • Rossafi, Mohamed (LASMA Laboratory Department of Mathematics, Faculty of Sciences, Dhar El Mahraz University) ;
  • Kari, Abdelkarim (Laboratory of Algebra, Analysis and Applications, Faculty of Sciences Ben M'Sik, Hassan II University) ;
  • Lee, Jung Rye (Department of Data Science, Daejin University)
  • 투고 : 2022.09.07
  • 심사 : 2022.09.19
  • 발행 : 2022.11.30

초록

In this paper, we give an extended version of fixed point results for 𝜃-contraction and 𝜃-𝜙-contraction and define a new type of contraction, namely, cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction in a complete metric space. Moreover, we prove the existence of best proximity point for cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction. Also, we establish best proximity result in the setting of uniformly convex Banach space.

키워드

참고문헌

  1. S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations int'egrales. Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  2. F.E. Browder: On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30 (1968), 27-35. https://doi.org/10.1016/S1385-7258(68)50004-0
  3. L.K. Dey & S. Mondal: Best proximity point of F-contraction in complete metric space. Bull. Allahabad Math. Soc. 30 (2015), no. 2, 173-189.
  4. L.K. Dey & S. Mondal: Best proximity point theorems for cyclic Wardowski type contraction. Thai J. Math. 18 (2020), 1857-1864.
  5. A.A. Eldred & P. Veeramani: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
  6. M. Jleli, E. Karapinar & B. Samet: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. 439.
  7. M. Jleli & B. Samet: A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. 38.
  8. R. Kannan: Some results on fixed points-II. Am. Math. Monthly 76 (1969), 405-408.
  9. A. Kari, M. Rossafi, E. Marhrani & M. Aamri: Fixed-point theorem for nonlinear F-contraction via w-distance. Adv. Math. Phys. 2020 (2020), Article ID 6617517.
  10. S. Reich: Some remarks concerning contraction mappings. Canad. Math. Bull. 14 (1971), no. 2, 121-124. https://doi.org/10.4153/CMB-1971-024-9
  11. D. Zheng , Z. Cai & P. Wang: New fixed point theorems for θ-𝜑-contraction in complete metric spaces. J. Nonlinear Sci. Appl. 10 (2017), 2662-2670. https://doi.org/10.22436/jnsa.010.05.32