DOI QR코드

DOI QR Code

Comparison of Turkish Steel Building Specifications, TS 648 and SDCCSS 2018

  • 투고 : 2022.04.21
  • 심사 : 2022.11.10
  • 발행 : 2022.11.25

초록

This study presents similarities and differences between Turkish Building Code for Steel Structures, which are TS 648 and SDCCSS (Specification for Design, Calculation and Construction of Steel Structures) in terms of the design of the members. Hot-rolled I-shaped steel sections for symmetrical and U-shaped steel sections (i.e., channels) for monosymmetric sections were elaborated in detail. The design strength of tension members under tensile load, compression members under axial load and flexural members under flexure and shear were examined separately. Connection details for tension members, slenderness for compression members and distance between lateral supports for flexural members were considered as prime variables. Analysis results revealed the design strength of the tension members where at least one of the cross-sectional parts is not connected to the connection plates, I-shaped compression members where a slenderness ratio is below 39 (𝛌<39), U-shaped compression members and flexural members where Lb is between Lp and Lr (Lpb≤Lr) designed based on TS 648 are greater than those designed based on SDCCSS 2018. Strength differences between the specification can reach 79% for tensile members, 13% for compression members and 9% for flexural members.

키워드

참고문헌

  1. Aksoylu, C. (2021). "Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches", Steel Compos. Struct 40(2), 267-285. https://doi.org/10.12989/scs.2021.40.2.267.
  2. Aksoylu, C. and Kara, N. (2020), "Strengthening of RC frames by using high strength diagonal precast panels", J. Build. Eng., 31, 101338. https://doi.org/10.1016/j.jobe.2020.101338.
  3. Aksoylu, C. and Sezer, R. (2018), "Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames", KSCE J. Civil Eng., 22(1), 236-246. https://doi.org/10.1007/s12205-017-1290-6.
  4. Aksoylu, C., Mobark, A., Hakan Arslan, M. and Hakki Erkan, I. (2020), "A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings", Revista de la construccion, 19(2), 282-305. https://doi.org/10.7764/rdlc.19.2.282-305.
  5. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H (2022), "Mechanical steel stitches: An innovative approach for strengthening shear deficiency in undamaged reinforced concrete beams", Buildings.
  6. American Institute of Steel Construction (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, Chicago.
  7. American Institute of Steel Construction (2010), Specification for Structural Steel Buildings, ANSI/AISC 360-10, Chicago.
  8. American Institute of Steel Construction (2016), Specification for Structural Steel Buildings, ANSI/AISC 360-16, Chicago.
  9. American Institute of Steel Construction (1923), Standard Specification for Structural Steel for Building, Chicago.
  10. American Institute of Steel Construction (1986), The Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago.
  11. Ar, E. (2009), Celik yapilarin tasarim metodlari ve bunlarin karsilastirilmasi, Ph.D. Dissertation, DEu Fen Bilimleri Enstitusu.
  12. Azad, S.K., Topkaya, C. And Astaneh-Asl, A. (2017), "Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions", J. Construct. Steel Res., 133, 383-404. https://doi.org/10.1016/j.jcsr.2017.02.026.
  13. Baddoo, N.R., (2003), "A comparison of structural stainless steel design standards", In Proceedings of International Experts Seminar Stainless Steel in Structures, Ascot, UK, 20, 131-150.
  14. Bakhoum, M.M., Mourad, S.A. and Hassan, M.M. (2016), "Comparison of actions and resistances in different building design codes", J. Adv. Res., 7(5), 757-767. https://doi.org/10.1016/j.jare.2015.11.001
  15. Balkan, G. (2007), Turk, Amerikan ve Avrupa celik standartlarinin incelenmesi ve kiyaslanmasi, Master's thesis, Eskisehir Osmangazi universitesi, Eskisehir.
  16. Bayindir ve Iskan Bakanligi (2007), Deprem Bolgelerinde Yapilacak Binalar Hakkinda Yonetmelik, DBYBHY 2007.
  17. Bayram, H. (2001), Code Comparison of TS 648, EUROCODE 3: PART 1.1 and Load and Resistance Factor Design-AISC for Steel Connections, Master's Thesis, Middle East Technical University, Ankara.
  18. Bingol, C. (2014), Agir Sanayi Yapisinin AISC 360-10 Ve Ts-648 Yonetmeliklerine Gore Karsilastirmali Boyutlandirilmasi, Ph.D. Dissertation, Istanbul Technical University, Istanbul.
  19. Birkemoe, P.C. and Gilmor M.I. (1978), "Behavior of bearingcritical double-angle beam connections", Eng. J., AISC, 15(4) 109-115.
  20. British Standard Institution (1932), Specification for the Use of Structural Steel in Building, BS 449, London.
  21. British Standard Institution (2000), Structural Use of Steelwork in Building, BS 5950, London.
  22. Cevre ve Sehircilik Bakanligi (2016), Celik Yapilarin Tasarim, Hesap ve Yapimina Dair Esaslar, CYTHYE 2016, Ankara.
  23. Cevre ve Sehircilik Bakanligi. Celik Yapilarin Tasarim, Hesap ve Yapimina Dair Esaslar, CYTHYE 2018, Ankara, 2018.
  24. Deutsches Institut fur Normung (1934), Stahlbauten; Bemessung und Konstruktion, DIN 1050, Berlin.
  25. Deutsches Institut fur Normung (1981), Stahlbauten; Bemessung und Konstruktion, DIN 18800, Berlin.
  26. Durmaz, M.G. (2015), Celik Yapilarda Stabilite Analizi Yaklasimlarinin Degerlendirilmesi, Ph.D. Dissertation, Istanbul Technical University, Istanbul.
  27. Easterling, W.S. and Gonzalez, L. (1993), "Shear lag effects in steel tension members", Eng. J., 30(3) 77-89.
  28. European Standard, Comit Europeen de Normalisation (1992), Eurocode 3, Design of Steel Structures-Part 1: General Rules and Rules for Buildings, German version ENV 1993-1:1992, Brussels.
  29. European Standard, Comite Europeen de Normalisation (2004), Eurocode 3, Design of Steel Structures-Part 1: General Rules and Rules for Buildings, EN 1993-1:2004, Brussels.
  30. Firat, F.K. and Yucemen, M.S. (2015), "Comparison of loads in Turkish earthquake code with those computed statistically", Earthq. Struct., 8(5), 977-994. https://doi.org/10.12989/eas.2015.8.5.977.
  31. Galambos, T.V. (1999), "A comparison of Canadian, Mexican, and United States steel design standards", Eng. J. Amer. Insti. Steel Construct., 36, 52-66.
  32. Guclu, G. (2003), Cok Katli Bir Celik Toplu Konut Binasinin Karsilastirmali Tasarimi, Ph.D. Dissertation, Istanbul Technical University, Istanbul.
  33. Icisleri Bakanligi (2018), Afet ve Acil Durum Yonetimi Baskanligi. Turkiye Bina Deprem Yonetmeligi, TBDY 2018, Ankara.
  34. Inel, M. and Meral, E. (2016), "Seismic performance of RC buildings subjected to past earthquakes in Turkey", Earthq. Struct., 11(3), 483-503. http://dx.doi.org/10.12989/eas.2016.11.3.483.
  35. Insaat Muhendisleri Odasi (IMO), Istanbul Subesi. Celik Yapilar Emniyet Gerilmesi Esasina Gore Hesap ve Proje Esaslari, IMO02.R-01/2008, Istanbul.
  36. Isik, E. (2021), "A comparative study on the structural performance of an RC building based on updated seismic design codes: Case of Turkey", Challenge, 7, 123-134. https://doi.org/10.20528/cjsmec.2021.03.002.
  37. Japan Society of Civil Engineers (2007), Standard Specifications for Steel and Composite Structures, JSCE-2007, Tokyo, Japan.
  38. Karayer, A. (2020), S648 ve 2016 Turk celik yonetmeligine gore celik yapilarin hesap ve tasarim esaslarinin irdelenmesi, Master's Thesis, Nigde Omer Halisdemir universitesi, Nigde.
  39. Kavanagh, T.C. (1962), "Effective length of framed columns", Transact. Amer. Soc. Civil Eng., 127, 81-101. https://doi.org/10.1061/TACEAT.0008521
  40. Korkmaz, H.H., Dere, Y., Ozkilic, Y.O., Bozkurt, M.B., Ecemis, A. S. and Ozdoner, N. (2022), "Excessive snow induced steel roof failures in turkey", Eng. Fail. Anal., 106661.
  41. Korkmaz, K.A., Demir, F. And Yenice, T. (2015), "Earthquake performance investigation of R/C residential buildings in Turkey", Comput. Concrete, 15(6), 921-933. https://doi.org/10.12989/cac.2015.15.6.921.
  42. Kuyucuk, A.O. (1999), Comparison of TS 648, Load and Resistance Factor design and EUROCODE 3: Part 1.1 for design fundamentals and structural members", Master's thesis, Middle East Technical University, Ankara.
  43. Loorits, K. and Talvik, I. (2006), "Comparative study of the buckling of steel beams in Eurocode 3 and the Russian code", J. Construct. Steel Res., 62, 1290-1294. https://doi.org/10.1016/j.jcsr.2006.04.022
  44. Nasrat, M.S. (2018), Simetrik I-enkesitli celik egilme elemanlarinin tasarim ilkelerinin irdelenmesi ve tasarim tablolarinin hazirlanmasi, Master's thesis, Kocaeli universitesi, Kocaeli.
  45. National Standard of Canada. Design of Steel Structures (2019), CSA S16:19, Ontorio, Canada.
  46. Onat, O. and Yon, B. (2021), "A novel inter-story drift limit proposal for TBEC2018 and fragility prognosis with TSC2007", J. Struct. Eng., 4(2), 068-082. https://doi.org/10.31462/jseam.2021.04068082.
  47. Ozalp, Y. (2020), Celik tasiyici sistemli cerceve tipi yapinin CYTHYDE 2016, AISC 360-10 ve Eurocode 3 yonetmeliklerine gore analiz ve tasarimi, Master's thesis, Kirikkale universitesi, Kirikkale.
  48. Pinarbasi, S., Genc, T., Akpinar, E. and Okay, F. (2020), "Comparison of design guidelines for hot-rolled I-shaped steel compression members according to AISC 360-16 and EC3", Adv. Civil Eng., https://doi.org/10.1155/2020/6853176.
  49. Piroglu, F. and Ozakgul, K. (2016), "Partial collapses experienced for a steel space truss roof structure induced by ice ponds", Eng. Fail. Anal., 60, 155-165. https://doi.org/10.1016/j.engfailanal.2015.11.039.
  50. Piroglu, F., Ozakgul, K., Iskender, H., Trabzon, L. and Kahya, C. (2014), "Site investigation of damages occurred in a steel space truss roof structure due to ponding", Eng. Fail. Anal., 36, 301-313. https://doi.org/10.1016/j.engfailanal.2013.10.018.
  51. Surovek, A., Macphedran, I., Palaniswamy, V. and Bradford, M.A. (2010), "A comparison of international design standards for assessing lateral stability of steel beams", 4th International Conference on Steel & Composite Strucures, Sydney, 21-23 July.
  52. Tada, M., Fukui, T., Nakashima, M. and Roeder, C.W. (2003), "Comparison of strength capacity for steel building structures in the United States and Japan", Earthq. Eng. Eng. Seismol., 4(1), 37-49.
  53. Topkaya, C. and Sahin S. (2011), "A comparative study of AISC360 and EC3 strength limit states", Int. J. Steel Struct., 11(1) 13- 27. https://doi.org/10.1007/s13296-011-1002-x.
  54. Turk Standartlari Enstitusu (TSE), Celik Yapilarin Hesap ve Yapim Kurallari, TS 648, Ankara, 1980.
  55. Turk Standartlari Enstitusu (1997), Yapi Elemanlarinin Boyutlandirilmasinda Alinacak Yuklerin Hesap Degerleri, Ankara.
  56. Turk Standartlari Enstitusu (2007), Yapilar uzerindeki Etkiler - Bolum 1-3: Genel Etkiler - Kar Yukleri (Eurocode 1), TS EN 1991-1-3:2007, Ankara.
  57. Turk Standartlari Enstitusu (2007), Yapilar uzerindeki Etkiler - Bolum 1-4: Genel Etkiler - Ruzgar Etkileri (Eurocode 1), TS EN 1991-1-4:2007, Ankara.
  58. ulker, M. and Savas, S. (2018), "AISC 360-10 ve Turk Deprem Yonetmeligine Gore Celik Yapilarin Tasarimi", Firat universitesi Muhendislik Bilimleri Dergisi, 30, 21-32.
  59. Unal, M.C. (2015), Celik yapilarin farkli standartlara gore karsilastirmali tasarimi, Ph.D. Dissertation, Karadeniz Teknik universitesi, Trabzon.
  60. Uysal, Y., Aksoylu, C. and Arslan, M.H. (2022), "Cerceveli Binalarin Tasariminda Kullanilan Sonlu Eleman Programlarinin TBDY-2019'de Yer Alan Periyod, Taban Kesme Kuvveti ve Goreli Kat Otelemesi Baglaminda Degerlendirilmesi", Int. J. Eng. Res. Develop., 14(2), 941-957.
  61. Varlik Celik, S. (2019), Celik konstruksiyon sanayi yapilarinin eski ve yeni yonetmeliklere gore karsilastirmali analizi, Ph.D. Dissertation, Karadeniz Teknik universitesi, Trabzon.
  62. Yon, B. (2020), "Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes", Earthq. Struct., 18(6), 709-718. https://doi.org/10.12989/eas.2020.18.6.709.
  63. Zararsiz, U. (2021), Celik yapi sistemlerinin TCY-2016 ve TS648 yonetmeliklerine gore analizleri, Master's Thesis, Konya Teknik universitesi, Konya.
  64. Zeris, C.A. and Repapis, C.C. (2018), "Comparison of the seismic performance of existing RC buildings designed to different codes", Earthq. Struct., 14(6), 505-523. https://doi.org/10.12989/eas.2018.14.6.505.
  65. Zervent, A. (2009), Evaluation of steel building design methodologies: TS648, Eurocode 3 and LRFD, Master's Thesis, Middle East Technical University, Ankara.