DOI QR코드

DOI QR Code

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Tee, Wei Zhong (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Moon, Juhyuk (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Ku, Taeseo (Department of Civil and Environmental Engineering, Konkuk University)
  • 투고 : 2022.02.23
  • 심사 : 2022.08.13
  • 발행 : 2022.11.25

초록

The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

키워드

과제정보

The authors appreciate the financial support from the Singapore Ministry of Education (PI -Ku, Taeseo; Award Number: R-302-000-194-114) and Konkuk University.

참고문헌

  1. Chaunsali, P. and Mondal, P. (2015), "Influence of calcium sulfoaluminate (CSA) cement content on expansion and hydration behavior of various ordinary portland cement-CSA blends", J. Am. Ceramic Soc., 98(8), 2617-2624. https://doi.org/10.1111/jace.13645.
  2. Choi, S.G., Chu, J. and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
  3. Claisse, P.A. (2016), Chapter 20 - Hydration of cement. Edited by P.A.B.T.-C.E.M. Claisse. Butterworth-Heinemann, Boston, 189-200.
  4. Consoli, N.C., Cruz, R.C., Floss, M.F., Festugato, L., Consoli, C.N., Caberlon, C.R., Felipe, F.M. and Lucas, F. (2010), "Parameters controlling tensile and compressive strength of artificially cemented sand", J. Geotech. Geoenviron. Eng., 136(5), 759-763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278
  5. Consoli, N.C., Foppa, D., Festugato, L. and Heineck, K.S. (2007), "Key parameters for strength control of artificially cemented soils", J. Geotech. Geoenviron. Eng., 133(2), 197-205. https://doi.org/10.1680/geot.8.P.084.
  6. Consoli, N.C., Parraga Morales, D. and Saldanha, R.B. (2021), "A new approach for stabilization of lateritic soil with Portland cement and sand: Strength and durability", Acta Geotechnica, 16(5), 1473-1486. https://doi.org/10.1007/s11440-020-01136-y.
  7. Consoli, N.C.C., Fonseca, A.V. d. V. da, Silva, S.R.R., Cruz, R.C.C. and Fonini, A. (2012), "Parameters controlling stiffness and strength of artificially cemented soils", Geotechnique, 62(2), 177-183. https://doi.org/10.1680/geot.8.p.084.
  8. Gastaldi, D., Canonico, F., Capelli, L., Bianchi, M., Pace, M., Telesca, A. and Valenti, G. (2011), "Hydraulic behaviour of calcium sulfoaluminate cement alone and in mixture with portland cement", Proceedings of the 13th International Congress on the Chemistry of Cement, Madrid, Spain, July.
  9. Horpibulsuk, S., Bergado, D.T. and Lorenzo, G.A. (2004), "Compressibility of cement-admixed clays at high water content", Geotechnique, 54(2), 151-154. https://doi.org/10.1680/geot.2004.54.2.151.
  10. Huang, G., Pudasainee, D., Gupta, R. and Liu, W.V. (2021), "Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: Its effects on setting, workability, and strength development", Front. Struct. Civil Eng., 15(5), 1249-1260. https://doi.org/10.1007/s11709-021-0770-4.
  11. Janotka, I. and Krajci, U. (1999), "An experimental study on the upgrade of sulfoaluminate-belite cement systems by blending with Portland cement", Adv. Cement Res., 11(1), 35-41. https://doi.org/10.1680/adcr.1999.11.1.35.
  12. Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
  13. Jumassultan, A., Sagidullina, N., Kim, J., Ku, T. and Moon, S.W. (2021), "Performance of cement-stabilized sand subjected to freeze-thaw cycles", Geomech. Eng., 25(1), 41-48. https://doi.org/10.12989/gae.2021.25.1.041.
  14. Khan, Q., Subramanian, S., Wong, D.Y.C.D.Y.C. and Ku, T. (2019), "Bender elements in stiff cemented clay: shear wave velocity correction by applying wavelength considerations", Can. Geotech. J., 56(7), 1034-1041. https://doi.org/10.1139/cgj-2018-0153.
  15. Ladd, R.S. (1978), "Preparing test specimens using undercompaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.
  16. Lan, W. and Glasser, F.P. (1996), "Hydration of calcium sulphoaluminate cements", Adv. Cement Res., 8(31), 127-134. https://doi.org/10.1680/adcr.1996.8.31.127.
  17. Lee, C., Nam, H., Lee, W., Choo, H. and Ku, T. (2019), "Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout", Geomech. Eng., 19(4), 343-352. https://doi.org/10.12989/gae.2019.19.4.343.
  18. Mehdipour, I. and Khayat, K.H. (2018), "Effect of shrinkage reducing admixture on early expansion and strength evolution of calcium sulfoaluminate blended cement", Cement Concrete Compos., 92, 82-91. https://doi.org/10.1016/j.cemconcomp.2018.06.002.
  19. Mindess, S., Young, J.F. and Darwin, D. (2002), Concrete. 2nd Ed., Prentice Hall, Upper Saddle River, N.J.
  20. Moon, S.W.W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granular Matter, 22(1), 1-13. https://doi.org/10.1007/s10035-019-0975-6.
  21. Park, S., Jeong, Y., Moon, J. and Lee, N. (2021), "Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes", J. Build. Eng., 34, 101880. https://doi.org/10.1016/j.jobe.2020.101880
  22. Pelletier, L., Winnefeld, F. and Lothenbach, B. (2010), "The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite: Hydration mechanism and mortar properties", Cement Concrete Compos., 32(7), 497-507. https://doi.org/10.1016/j.cemconcomp.2010.03.010.
  23. Pooni, J., Robert, D., Giustozzi, F., Setunge, S., Xie, Y.M. and Xia, J. (2021), "Performance evaluation of calcium sulfoaluminate as an alternative stabilizer for treatment of weaker subgrades", Transportation Geotech., 27, 100462. https://doi.org/10.1016/j.trgeo.2020.100462.
  24. Rios, S., Viana da Fonseca, A. and Baudet, B.A. (2014), "On the shearing behaviour of an artificially cemented soil", Acta Geotechnica, 9(2), 215-226. https://doi.org/10.1007/s11440-013-0242-7.
  25. Saberian, M., Moradi, M., Vali, R. and Li, J. (2018), "Stabilized marine and desert sands with deep mixing of cement and sodium bentonite", Geomech. Eng., 14(6), 553-562. https://doi.org/10.12989/gae.2018.14.6.553.
  26. Sagidullina, N., Abdialim, S., Kim, J., Satyanaga, A. and Moon, S.W. (2022), "Influence of freeze-thaw cycles on physical and mechanical properties of cement-treated silty sand", Sustainability, 14(12), 7000. https://doi.org/10.3390/su14127000.
  27. Shen, Z., Gao, F., Wang, Z. and Jiang, M. (2019), "Evolution of mesoscale bonded particle clusters in cemented granular material", Acta Geotechnica, 14(6), 1653-1667. https://doi.org/10.1007/s11440-019-00850-6.
  28. Shooshpasha, I. and Shirvani, R.A. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., 8(1), 17-31. https://doi.org/10.12989/gae.2015.8.1.017.
  29. Sirtoli, D., Wyrzykowski, M., Riva, P. and Lura, P. (2020), "Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements", Materials and Structures/Materiaux et Constructions, 53(5), 1-14. https://doi.org/10.1617/s11527-020-01561-1.
  30. Subramanian, S., Khan, Q. and Ku, T. (2019a), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Constr. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.
  31. Subramanian, S., Khan, Q. and Ku, T. (2020a), "Effect of sand on the stiffness characteristics of cement-stabilized clay", Constr. Build. Mater., 264, 120192. https://doi.org/10.1016/j.conbuildmat.2020.120192.
  32. Subramanian, S., Moon, S.W. and Ku, T. (2019b), "Effect of Gypsum on the strength of CSA treated sand", Proceedings of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering.
  33. Subramanian, S., Moon, S.., Moon, J. and Ku, T. (2018), "CSA-treated sand for geotechnical application: Microstructure analysis and rapid strength development", J. Mater. Civil Eng., 30(12), 04018313. https://doi.org/10.1061/(asce)mt.1943-5533.0002523.
  34. Subramanian, S., Zhang, Y., Vinoth, G., Moon, J. and Ku, T. (2020b), "Hydraulic conductivity of cemented sand from experiments and 3D image based numerical analysis", Geomech. Eng., 21(5), 423-432. https://doi.org/10.12989/gae.2020.21.5.423.
  35. Trauchessec, R., Mechling, J.M., Lecomte, A., Roux, A. and Le Rolland, B. (2014), "Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend", Adv. Cement Res., 26(6), 325-333. https://doi.org/10.1680/adcr.13.00051.
  36. Trauchessec, R., Mechling, J.M., Lecomte, A., Roux, A. and Le Rolland, B. (2015), "Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends", Cement Concrete Compos., 56, 106-114. https://doi.org/10.1016/j.cemconcomp.2014.11.005.
  37. Vinoth, G., Moon, S.W., Moon, J. and Ku, T. (2018), "Early strength development in cement-treated sand using low-carbon rapid-hardening cements", Soils Found., 58(5), 1200-1211. https://doi.org/10.1016/j.sandf.2018.07.001.
  38. Wei, X. and Ku, T. (2020), "New design chart for geotechnical ground improvement: characterizing cement-stabilized sand", Acta Geotechnica, 15(4), 999-1011. https://doi.org/10.1007/s11440-019-00838-2.
  39. Wei, X., Liu, H. and Ku, T. (2020), "Microscale analysis to characterize effects of water content on the strength of cement-stabilized sand-clay mixtures", Acta Geotechnica, 15(10), 2905-2923. https://doi.org/10.1007/s11440-020-01018-3.
  40. Winnefeld, F. and Lothenbach, B. (2010), "Hydration of calcium sulfoaluminate cements-experimental findings and thermodynamic modelling", Cement Concrete Res., 40(8): 1239-1247. https://doi.org/10.1016/j.cemconres.2009.08.014.
  41. Winnefeld, F., Martin, L.H.J., Muller, C.J. and Lothenbach, B. (2017), "Using gypsum to control hydration kinetics of CSA cements", Constr. Build. Mater., 155, 154-163. https://doi.org/10.1016/j.conbuildmat.2017.07.217.
  42. Wolf, J.J., Jansen, D., Goetz-Neunhoeffer, F. and Neubauer, J. (2019), "Mechanisms of early ettringite formation in ternary CSA-OPC-anhydrite systems", Adv. Cement Res., 31(4), 195-204. https://doi.org/10.1680/jadcr.18.00115
  43. Xiao, H., Yao, K., Liu, Y., Goh, S.H. and Lee, F.H. (2018), "Bender element measurement of small strain shear modulus of cement-treated marine clay - Effect of test setup and methodology", Constr. Build. Mater., 172, 433-447. https://doi.org/10.1016/j.conbuildmat.2018.03.258.
  44. Yao, K., Xiao, H., Chen, D.H. and Liu, Y. 2018. "A direct assessment for the stiffness development of artificially cemented clay", Geotechnique, 1-7. https://doi.org/10.1680/jgeot.18.t.010.
  45. Yilmaz, Y., Cetin, B. and Kahnemouei, V.B. (2017), "Compressive strength characteristics of cement treated sand prepared by static compaction method", Geomech. Eng., 12(6), 935-948. https://doi.org/10.12989/gae.2017.12.6.935.