Acknowledgement
The authors would like to express our sincere gratitude to the experimental facilities and expense supported by NCREE (06110A2500) as well as the financial support provided by the Ministry of Science and Technology, Republic of China (Taiwan) (MOST 108-2221-E-011-006-MY2).
References
- Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. America, 97(5), 1486-1501. http://dx.doi.org/10.1785/0120060255
- Banuelos-Garcia, F.H., Ayala, G. and Lopez, S. (2020), "A displacement-based seismic design procedure for buildings with fluid viscous dampers", Earthq. Struct., Int. J., 18(5), 609-623. https://doi.org/10.12989/eas.2020.18.5.609
- Barnes, H.A. (1989), "Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids", J. Rheol., 33(2), 329-366. https://doi.org/10.1122/1.550017
- Bidgoli, M.R., Kolahchi, R. and Karimi, M.S. (2016), "An experimental study and new correlations of viscosity of ethylene glycol-water based nanofluid at various temperatures and different solid concentrations", Struct. Eng. Mech., Int. J., 58(1), 93-102. https://doi.org/10.12989/sem.2016.58.1.093
- Chen, P.C., Ting, G.C. and Li, C.H. (2020), "A versatile smallscale structural laboratory for novel experimental earthquake engineering", Earthq. Struct., Int. J., 18(3), 337-348. http://dx.doi.org/10.12989/eas.2020.18.3.337
- Cheng, M.Y. and Prayogo, D. (2014), "Symbiotic organisms search: A new metaheuristic optimization algorithm", Comput. Struct., 139, 98-112. https://doi.org/10.1016/j.compstruc.2014.03.007
- Constantinou, M.C. and Symans, M.D. (1993), "Experimental study of seismic response of buildings with supplemental fluid dampers", Struct. Des. Tall Build., 2(2), 93-132. https://doi.org/10.1002/tal.4320020203
- Crivellaro, C. and Donha, D.C. (2008), "Discrete-time dynamic model of a magneto-rheological damper for semi-active control design", ABCM Symposium Series in Mechatronics, Vol. 3, pp. 27-36.
- Ghaffarzadeh, H. (2013), "Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step", Smart Struct. Syst., Int. J., 12(6), 595-617. http://dx.doi.org/10.12989/sss.2013.12.6.595
- Guler, E. and Alhan, C. (2019), "Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings", Earthq. Struct., Int. J., 17(2), 191-204. https://doi.org/10.12989/eas.2019.17.2.191
- Hoffman, R.L. (1974), "Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. theory and experimental tests", J. Colloid Interf. Sci., 46(3), 491-506. https://doi.org/10.1016/0021-9797(74)90059-9
- Huang, X. (2018), "Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes", Earthq. Struct., Int. J., 14(3), 215-227. https://doi.org/10.12989/eas.2018.14.3.215
- Khater, H.M. (2016), "Nano-Silica effect on the physicomechanical properties of geopolymer composites", Adv. Nano Res., Int. J., 4(3), 181-195. https://doi.org/10.12989/anr.2016.4.3.181
- Kurino, H., Tagami, J., Shimizu, K. and Kobori, T. (2003), "Switching oil damper with built-in controller for structural control", J. Struct. Eng., 129(7), 895-904. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(895)
- Lewandowski, R., Slowik, M. and Przychodzki, M. (2017), "Parameters identification of fractional models of viscoelastic dampers and fluids", Struct. Eng. Mech., Int. J., 63(2), 181-193. https://doi.org/10.12989/sem.2017.63.2.181
- Linderman, L.E. and Spencer Jr., B.F. (2015), "Closed-loop structural control with real-time smart sensors", Smart Struct. Syst., Int. J., 16(6), 1147-1167. http://dx.doi.org/10.12989/sss.2015.16.6.1147
- Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., Int. J., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227
- Providakis, C.P. (2008), "Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations", Eng. Struct., 30(5), 1187-1198. https://doi.org/10.1016/j.engstruct.2007.07.020
- Spencer Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model of a magnetorheological damper", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Wei, M., Lin, K., Guo, Q. and Sun, H. (2019), "Characterization and performance analysis of a shear thickening fluid damper", Measure. Control, 52(1-2), 72-80. https://doi.org/10.1177/0020294018819543
- Yeh, F.Y., Chang, K.C., Chen, T.W. and Yu, C.H. (2014), "The dynamic performance of a shear thickening fluid viscous damper", J. Chinese Inst. Engineers, 37(8), 983-994. https://doi.org/10.1080/02533839.2014.912775
- Zapateiro, M., Luo, N., Taylor, E. and Dyke, S.J. (2010), "Modeling and identification of a class of MR fluid foam dampers", Smart Struct. Syst., Int. J., 6(2), 101-113. http://dx.doi.org/10.12989/sss.2010.6.2.101
- Zhao, Q., He, Y., Yao, H. and Wen, B. (2018), "Dynamic performance and mechanical model analysis of a shear thickening fluid damper", Smart Mater. Struct., 27(7), 075021. https://doi.org/10.1088/1361-665X/aac23f