DOI QR코드

DOI QR Code

엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato

  • 이재면 (국립공주대학교 원예학과) ;
  • 정재연 (국립공주대학교 원예학과) ;
  • 최효길 (국립공주대학교 원예학과)
  • Lee, Jae Myun (Department of Horticulture, Kongju National University) ;
  • Jeong, Jae Yeon (Department of Horticulture, Kongju National University) ;
  • Choi, Hyo Gil (Department of Horticulture, Kongju National University)
  • 투고 : 2022.08.10
  • 심사 : 2022.10.13
  • 발행 : 2022.10.31

초록

토마토의 생육과 수확량을 예측하기 위한 중요한 요소 중의 하나는 엽면적이다. 이러한 엽면적을 정확하게 예측하는 것은 토마토 식물 생장 평가 모델의 시작이라고 할 수 있다. 이를 위해 본 연구는 토마토 잎의 측정을 통해 엽면적(LA)을 추정하는 효과적인 모델을 확인하기 위해 수행하였다. 토마토 식물 잎 조사를 위해 2주 간격으로 5개체의 토마토 식물체의 전개된 모든 잎에 대해 엽면적(LA), 엽장(L), 엽폭(W), 엽신장(La)를 측정하였다. LA와 토마토 잎 독립변수의 상관관계는 La × W, L × W, La + W, L + W의 식이 강한 양의 관계를 나타냈다. LA 추정은 LA = a + b(La2 + W2)을 사용하는 선형 모델이 가장 정확한 추정치를 나타내었다(R2 = 0.867, RMSE = 88.76). 9월부터 12월까지 토마토 잎의 위치에 따른 상, 중, 하 엽의 모델을 살펴본 결과, 상, 중, 하로 잎 위치에 따른 모델별 결정계수(R2) 값은 각각 0.878, 0.726, 0.794였다. 상위엽을 바탕으로 추정된 모델의 정확도가 가장 높았는데, 이는 10월 이후 토마토 재배 농가에서 중위엽과 하위엽에 실시한 반적엽의 영향으로 판단된다.

One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

키워드

과제정보

본 연구는 농림식품기술기획평가원 및 스마트팜연구개발사업단의 연구사업(과제번호: 421001-03)의 지원에 의해 이루어진 것임.

참고문헌

  1. Carmassi G., L. Incrocci, G. Incrocci, and A. Pardossi 2007, Non-destructive estimation of leaf area in tomato (Solanum lycopersicum L.) and gerbera (Gerbera jamesonii H. Bolus). Agr Med 137:172-176.
  2. Carvalho J.O.D., M. Toebe, F.L. Tartaglia, C.T. Bandeira, and A.L. Tambara 2017, Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. An Acad Bras Cienc 89:1851-1868. doi:10.1590/0001-3765201720170077
  3. Cho Y.Y., S. Oh, M.M. Oh, and J.E. Son 2007, Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci Hortic 111:330-334. doi:10.1016/j.scienta.2006.12.028
  4. Corcoles J.I., A. Dominguez, M.A. Moreno, J.F. Ortega, and J.A. de Juan 2015, A non-destructive method for estimating onion leaf area. Irish J Agric Food Res 54:17-30. doi:10.1515/ijafr-2015-00xx
  5. Fanourakis D., F. Kazakos, and P.A. Nektarios 2021, Allometric individual leaf area estimation in chrysanthemum. Agronomy 11:795. doi:10.3390/agronomy11040795
  6. Ghadami F.A., M. Raeini-Sarjaz, A. Shahnazari, and H. Zareabyaneh 2015, Non-destructive estimation of sunflower leaf area and leaf area index under different water regime managements. Arch Agron Soil Sci 61:1357-1367. doi:10.1080/03650340.2014.1002776
  7. Heuvelink E. 1999, Evaluation of a dynamic simulation model for tomato crop growth and development. Ann Bot 83:413-422. doi:10.1006/anbo.1998.0832
  8. Heuvelink E., M.J. Bakker, A. Elings, R. Kaarsemaker, and L.F.M. Marcelis 2005, Effect of leaf area on tomato yield. Acta Hortic 691:43-50. doi:10.17660/ActaHortic.2005.691.2
  9. Jo J.S., H.S. Sim, S.B. Jung, Y.H. Moon, W.J. Jo, U.J. Woo, and S.K. Kim 2022, Estimation and validation of the leaf areas of five June-bearing strawberry (Fragaria × ananassa) cultivars using non-destructive methods. J Bio-Env Con 31:98-103. doi:10.12791/KSBEC.2022.31.2.098
  10. Jo W.J., and J.H. Shin 2020, Effect of leaf-area management on tomato plant growth in greenhouses. Hortic Environ Biotechnol 61:981-988. doi:10.1007/s13580-020-00283-1
  11. Jung D.H., Y.Y. Cho, J.G. Lee, and J.E Son 2016, Estimation of leaf area, leaf fresh weight, and leaf dry weight of Irwin mango grown in greenhouse using leaf length, leaf width, petiole length, and SPAD value. Protected Hort Plant Fac 25:146-152. (in Korean) doi:10.12791/KSBEC.2016.25.3.146
  12. Keramatlou I., M. Sharifani, H. Sabouri, M. Alizadeh, and B. Kamkar 2015, A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Sci Hortic 184:36-39. doi:10.1016/j.scienta.2014.12.017
  13. Khan F.A., F.A. Banday, S. Narayan, F.U. Khan, and S.A. Bhat 2016, Use of models as non-destructive method for leaf area estimation in horticultural crops. Int J Appl Sci 4:162-180. doi:10.21013/jas.v4.n1.p19
  14. Kim S.E., M.Y. Lee, and Y.S. Kim 2013, Characterization of photosynthetic rates by tomato leaf position. Hortic Sci Technol 31:146-152. (in Korean) doi:10.7235/hort.2013.12130
  15. Klaring H.P., and A. Krumbein 2013, The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. J Agron Crop Sci 199:351-359. doi:10.1111/jac.12018
  16. Korean Statistical Information Service (KOSIS) 2020, Vegetable production (fruits and vegetables). (in Korean) Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0027&conn_path=I3 Accessed 5 July 2022.
  17. Kucukonder H., S. Boyaci, and A. Akyuz 2016, A modeling study with an artificial neural network: developing estimation models for the tomato plant leaf area. Turk J Agric For 40: 203-212. doi:10.3906/tar-1408-28
  18. Kumar M.K., R.S. Kumar, V. Sankar, T. Sakthivel, G. Karunakaran, and P.C. Tripathi 2017, Non-destructive estimation of leaf area of durian (Durio zibethinus) - An artificial neural network approach. Sci Hortic 219:319-325. doi.org/10.1016/j.scienta.2017.03.028
  19. Lim J.M., B.S. Kwon, D.Y. Shin, K.H. Hyun, H.J. Kim, S.J. Chung, B.S. Lee, and J.T. Lim 2006, Effects of climatic factors varied due to the type of plastic house, cultural season and locations in the plastic house on the growth of cucumber plants grown in rockwool. Korean J Plant Res 19:218-222. (in Korean)
  20. Noh H.S., and Y.S. Lee 2020, Determinants of growth variables on smart farm tomato production. Soc Converg Knowl Trans 8:17-25. (in Korean) doi:10.22716/sckt.2020.8.3.016
  21. Ohashi Y., Y. Ishigami, and E. Goto 2020, Monitoring the growth and yield of fruit vegetables in a greenhouse using a three-dimensional scanner. Sensors 20:5270. doi:10.3390/s20185270
  22. Padron R.A.R., S.J. Lopes, A. Swarowsky, R.R. Cerquera, C.U. Nogueira, and M. Maffei 2016, Non-destructive models to estimate leaf area on bell pepper crop. Cienc Rural 46: 1938-1944. doi:10.1590/0103-8478cr20151324
  23. Rouphael Y., G. Colla, S. Fanasca, and F. Karam 2007, Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica 45:306-308. doi:10.1007/s11099-007-0051-z
  24. Rural Development Administration (RDA) 2012, Research analysis criteria. Ed 5, RDA, Suwon, Korea, pp 503-504. (in Korean)
  25. Rural Development Administration (RDA) 2017, Tomato. RDA, Wanju, Korea, pp 85. (in Korean)
  26. Salazar J.C.S., L.M. Melgarejo, E.H.D. Bautista, J.A. Di Rienzo, and F. Casanoves 2018, Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Sci Hortic 229:19-24. doi:10.1016/j.scienta.2017.10.034
  27. Schwarz D., and H.P. Klaring 2001, Allometry to estimate leaf area of tomato. J Plant Nutr 24:1291-1309. doi:10.1081/PLN-100106982
  28. Seo B.S., Y.H. Park, D.N. Jeong, S.W. Seo, C.W. Kim, and J.H. Lee 2015, Development of estimating method of leaf area for non-destructive diagnosis of growth and development of tomato plants. J Agric Sci Technol 51:11-14. (in Korean) doi:10.29335/tals.2015.51.11
  29. Shin Y.S. 2019, Global tomato producton and trade trends. Korea Rural Economic Institute (KREI), Naju, Korea, pp 61-76. (in Korean)
  30. Stradiot P., and P. Battistel 2003, Improved plant management with localised crop heating and advice on distance in the Mediterranean climate. Acta Hortic 614:461-467. doi:10.17660/ActaHortic.2003.614.69
  31. Wi S.H., K.H. Yeo, H.S. Choi, I. Yu, J.H. Lee, and H.J. Lee 2021, Effects of low air temperature and light intensity on yield and quality of tomato at the early growth stage. J Bio-Env Con 30:448-454. (in Korean) doi:10.12791/KSBEC.2021.30.4.448