DOI QR코드

DOI QR Code

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan (School of urban construction, Zhejiang Shuren University) ;
  • Dong, Fenghui (College of Civil Engineering, Nanjing Forestry University) ;
  • Qiu, Yiqi (Poly Changda Engineering Co., Ltd.) ;
  • Xi, Lei (CCCC First Highway Survey, Design and Research Institute Co., Ltd.) ;
  • Majdi, Ali (Department of Building and Construction Technologies Engineering, Al- Mustaqbal University College) ;
  • Ali, H. Elhosiny (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University)
  • 투고 : 2021.08.04
  • 심사 : 2022.10.24
  • 발행 : 2022.10.25

초록

Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

키워드

과제정보

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. Y20A020034), the Open Fund Project of Key Scientific Research Platform for Basic Scientific Research of Central Universities (310821171119), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20200793).

참고문헌

  1. Ahmed, F.B., Ahsan, K.A., Shariff, T. and Meem, S.R. (2021a), "Formulation of polynomial equation predicting the splitting tensile strength of concrete", Materials Today: Proceedings, 38, 3269-3278. https://doi.org/10.1016/j.matpr.2020.10.017.
  2. Ahmed, F.B., Biswas, R.K., Ahsan, K.A., Islam, S. and Rahman, M.R. (2021b), "Estimation of strength properties of geopolymer concrete", Materials Today: Proceedings, 44, 871-877. https://doi.org/10.1016/j.matpr.2020.10.790.
  3. Bai, C., Nguyen, H., Asteris, P.G., Nguyen-Thoi, T. and Zhou, J. (2020), "A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams", Appl. Soft Comput., 97, 106831. https://doi.org/10.1016/j.asoc.2020.106831.
  4. Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639.
  5. Behnood, A. and Golafshani, E.M. (2020), "Machine learning study of the mechanical properties of concretes containing waste foundry sand", Construct. Build. Mater., 243, 118152. https://doi.org/10.1016/j.conbuildmat.2020.118152.
  6. Behnood, A., Verian, K.P. and Gharehveran, M.M. (2015), "Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength", Construct. Build. Mater., 98, 519-529. https://doi.org/10.1016/j.conbuildmat.2015.08.124.
  7. Bouchekara, H.R. (2019), "Electrostatic discharge algorithm: a novel nature-inspired optimisation algorithm and its application to worst-case tolerance analysis of an EMC filter", IET Science, Measure, Technol., 13(4), 491-499. https://doi.org/10.1049/iet-smt.2018.5194
  8. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Construct. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
  9. Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.
  10. Chaabene, W.B., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Construct. Build. Mater., 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889
  11. Cheng, H., Sun, L., Wang, Y. and Chen, X. (2021), "Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures", Int. J. Fatigue, 151, 106386. https://doi.org/10.1016/j.ijfatigue.2021.106386.
  12. Ebrahimi, M., Rostami, H., Osouli, A., Rosanna Saindon, R. "Use of Geoelectrical Techniques to Detect Hydrocarbon Plume in Leaking Pipelines".
  13. Eesa, A.S., Abdulazeez, A.M. and Orman, Z. (2017), "A DIDS Based on The Combination of Cuttlefish Algorithm and Decision Tree", Sci. J. Univ. Zakho, 5(4), 313-318. https://doi.org/10.25271/2017.5.4.382
  14. Eesa, A.S., Brifcani, A.M.A. and Orman, Z. (2013), "Cuttlefish algorithm-a novel bio-inspired optimization algorithm", Int. J. Sci. Eng. Res., 4(9), 1978-1986.
  15. Elkholy, M.M., El-Hay, E.A. and El-Fergany, A.A. (2022), "Synergy of electrostatic discharge optimizer and experimental verification for parameters estimation of three phase induction motors", Eng. Sci. Technol., Int. J., 31, 101067. https://doi.org/10.1016/j.jestch.2021.09.013.
  16. Ghasemi, M., Ghavidel, S., Akbari, E. and Vahed, A.A. (2014), "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos", Energy, 73, 340-353. https://doi.org/10.1016/j.energy.2014.06.026
  17. Golafshani, E.M. and Behnood, A. (2021), "Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach", Construct. Build. Mater., 291, 123314. https://doi.org/10.1016/j.conbuildmat.2021.123314.
  18. Gu, M., Mo, H., Qiu, J., Yuan, J. and Xia, Q. (2022), "Behavior of floating stone columns reinforced with geogrid encasement in model tests", Front. Mater., 9, 980851. https://doi.org/10.3389/fmats.2022.980851.
  19. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: Analysis and experiment", Nonline. Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  20. Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y. and Zhao, Z. (2022), "Research progress on lunar and Martian concrete", Construct. Build. Mater., 343, 128117. https://doi.org/10.1016/j.conbuildmat.2022.128117a.
  21. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  22. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  23. Jiang, W., Xie, Y., Li, W., Wu, J. and Long, G. (2021), "Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm", Eng. Struct., 230, 111696. https://doi.org/10.1016/j.engstruct.2020.111696.
  24. Joshi, P., Gavel, S. and Raghuvanshi, A. (2023), Microelectronics, Communication Systems, Machine Learning and Internet of Things. Springer, 29-39. https://doi.org/10.1007/978-981-19-1906-0_3.
  25. Kandiri, A., Sartipi, F. and Kioumarsi, M. (2021), "Predicting compressive strength of concrete containing recycled aggregate using modified ann with different optimization algorithms", Appl. Sci., 11 (2), 485. https://doi.org/10.3390/app11020485.
  26. Keshtegar, B., Gholampour, A., Thai, D.K., Taylan, O. and Trung, N.T. (2021), "Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete", Compos. Struct., 262, 113644. https://doi.org/10.1016/j.compstruct.2021.113644.
  27. Koya, B.P., Aneja, S., Gupta, R. and Valeo, C. (2021), "Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2021.1917021.
  28. Kuppusamy, Y., Jayaseelan, R., Pandulu, G., Sathish Kumar, V., Murali, G., Dixit, S. and Vatin, N.I. (2022), "Artificial neural network with a cross-validation technique to predict the material design of eco-friendly engineered geopolymer composites", Materials, 15(10), 3443. https://doi.org/10.3390/ma15103443.
  29. Lan, Y., Zheng, B., Shi, T., Ma, C., Liu, Y. and Zhao, Z. (2022), "Crack resistance properties of carbon nanotube-modified concrete", Magazine Concrete Res., 1-11. https://doi.org/10.1680/jmacr.21.00227.
  30. Li, Q., Song, D., Yuan, C. and Nie, W. (2022), "An image recognition method for the deformation area of open-pit rock slopes under variable rainfall", Measurement, 188, 110544. https://doi.org/10.1016/j.measurement.2021.110544.
  31. Lin, C. and Wang, J. (2022), "Metaheuristic-designed systems for simultaneous simulation of thermal loads of building", Smart Struct. Syst., 29(5), 677-691. https://doi.org/10.12989/sss.2022.29.5.677.
  32. Liu, Y., Tian, J., Hu, R., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Improved feature point pair purification algorithm based on SIFT during endoscope image stitching", Front. Neurorobotics, 16, https://doi.org/10.3389/fnbot.2022.840594.
  33. Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Nat. Hazards, 1-37. https://doi.org/10.1007/s11069-021-05083-z.
  34. Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7.
  35. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-ofthe-art metaheuristic techniques", Sensors, 20, https://doi.org/10.3390/s20061723.
  36. Mehrabian, A.R. and Lucas, C. (2006), "A novel numerical optimization algorithm inspired from weed colonization", Ecological Informatics, 1(4), 355-366. https://doi.org/10.1016/j.ecoinf.2006.07.003
  37. Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340.
  38. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Enviro. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
  39. Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomatics Nat. Haz. Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126.
  40. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019c), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
  41. Naidu, Y.R. and Ojha, A. (2015), "A hybrid version of invasive weed optimization with quadratic approximation", Soft Comput. 19(12), 3581-3598. https://doi.org/10.1007/s00500-015-1896-x
  42. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomatics, Nat. Haz. Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782.
  43. Nguyen, H., Vu, T., Vo, T.P. and Thai, H.T. (2021), "Efficient machine learning models for prediction of concrete strengths", Construct. Build. Mater., 266, 120950. https://doi.org/10.1016/j.conbuildmat.2020.120950.
  44. Oluokun, F. (1991), "Prediction of concrete tensile strength from its compressive strength: an evaluation of existing relations for normal weight concrete", Mater. J., 88(3), 302-309.
  45. Osouli, A., Ebrahimi, M., Alzamora, D., Shoup, H.Z. and Pagenkopf, J. (2022), "Multi-criteria assessment of bridge sites for conducting PSTD/ISTD: Case histories", Transport. Res. Record, 03611981221108153.
  46. Oyebisi, S., Igba, T., Raheem, A. and Olutoge, F. (2020), "Predicting the splitting tensile strength of concrete incorporating anacardium occidentale nut shell ash using reactivity index concepts and mix design proportions", Case Studies Construct. Mater., 13, e00393. https://doi.org/10.1016/j.cscm.2020.e00393.
  47. Qiao, W., Moayedi, H. and Foong, L.K. (2020), "Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption", Energy Build., 217, 110023. https://doi.org/10.1016/j.enbuild.2020.110023.
  48. Rahman, J., Ahmed, K.S., Khan, N.I., Islam, K. and Mangalathu, S. (2021), "Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach", Eng. Struct., 233, 111743. https://doi.org/10.1016/j.engstruct.2020.111743.
  49. Ray, S., Haque, M., Ahmed, T. and Nahin, T.T. (2021a), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber", J. King Saud Univ. Eng. Sci., https://doi.org/10.1016/j.jksues.2021.03.006.
  50. Ray, S., Rahman, M.M., Haque, M., Hasan, M.W. and Alam, M.M. (2021b), "Performance evaluation of SVM and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber", J. King Saud Univ. Eng. Sci., https://doi.org/10.1016/j.jksues.2021.02.009.
  51. Riffi, M.E. and Bouzidi, M. (2015), "Discrete cuttlefish optimization algorithm to solve the travelling salesman problem", 2015 Third World Conference on Complex Systems (WCCS) 1-6.
  52. Sanchez-Olivares, G. and Tomas, A. (2017), "Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending", Eng. Struct., 130, 162-179. https://doi.org/10.1016/j.engstruct.2016.10.010.
  53. Saravanan, B., Vasudevan, E. and Kothari, D. (2013), "A solution to unit commitment problem using invasive weed optimization algorithm", Front. Energy, 7(4), 487-494. https://doi.org/10.1007/s11708-013-0279-1
  54. Saridemir, M. (2011), "Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming", Expert Syst. Appl., 38(11), 14257-14268. https://doi.org/10.1016/j.eswa.2011.04.239.
  55. Shah, M.I., Memon, S.A., Khan Niazi, M.S., Amin, M.N., Aslam, F. and Javed, M.F. (2021), "Machine learning-based modeling with optimization algorithm for predicting mechanical properties of sustainable concrete", Adv. Civil Eng., 2021, https://doi.org/10.1155/2021/6682283
  56. Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D. and Li, Y. (2022), "Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation", Soil Dyn. Earthq. Eng., 161, 107419. https://doi.org/10.1016/j.soildyn.2022.107419.
  57. Shi, T., Liu, Y., Zhang, Y., Lan, Y., Zhao, Q., Zhao, Y. and Wang, H. (2022), "Calcined attapulgite clay as supplementary cementing material: Thermal treatment, hydration activity and mechanical properties", Int. J. Concrete Struct. Mater., 16(1), 1-10. https://doi.org/10.1186/s40069-022-00499-8.
  58. Tavana Amlashi, A., Alidoust, P., Pazhouhi, M., Pourrostami Niavol, K., Khabiri, S. and Ghanizadeh, A.R. (2021), "AI-based formulation for mechanical and workability properties of ecofriendly concrete made by waste foundry sand", J. Mater. Civil Eng., 33(4), 04021038. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003645.
  59. Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M. Singh, V., Chapi, K., Shirzadi, A., Panahi, S. and Chen, W. (2018), "New hybrids of anfis with several optimization algorithms for flood susceptibility modeling", Water, 10(9), 1210. https://doi.org/10.3390/w10091210
  60. Vamsi Nagaraju, T., Prasad, D. and Murthy, N. (2020), Soft Computing for Problem Solving, Springer, 317-324. https://doi.org/10.1007/978-981-15-0184-5_28.
  61. Wang, X., Yang, Y., Yang, R. and Liu, P. (2022), "Experimental analysis of bearing capacity of basalt fiber reinforced concrete short columns under axial compression", Coatings, 12(5), 654. https://doi.org/10.3390/coatings12050654.
  62. Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
  63. Wu, P., Liu, A., Fu, J., Ye, X. and Zhao, Y, (2022a), "Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm", Eng. Struct., 272, 114962. https://doi.org/10.1016/j.engstruct.2022.114962.
  64. Wu, Z., Xu, J., Chen, H., Shao, L., Zhou, X. amd Wang, S. (2022b), "Shear strength and mesoscopic characteristics of basalt fiber-reinforced loess after dry-wet cycles", J. Mater. Civil Eng., 34(6), 04022083. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004225.
  65. Wu, Z., Xu, J., Li, Y. and Wang, S. (2022c), "Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil", Int. J. Geomech., 22(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002415.
  66. Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L.F. and Nie, W. (2021a), "A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China", ISPRS Int. J. Geo-Inform. 10(2), 93. https://doi.org/10.3390/ijgi10020093.
  67. Xie, W., Nie, W., Saffari, P., Robledo, L.F., Descote, P.Y. and Jian, W. (2021b), "Landslide hazard assessment based on Bayesian optimization-support vector machine in Nanping City, China", Nat. Haz, 109(1), 931-948. https://doi.org/10.1007/s11069-021-04862-y.
  68. Yan, B., Ma, C., Zhao, Y., Hu, N. and Guo, L. (2019), "Geometrically enabled soft electroactuators via laser cutting", Adv. Eng. Mater., 21(11), 1900664. https://doi.org/10.1002/adem.201900664.
  69. Yaswanth, K., Revathy, J. and Gajalakshmi, P. (2021), "Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites", Comput. Concrete, 28(1), 55-68. https://doi.org/10.12989/cac.2021.28.1.055.
  70. Yaswanth, K., Revathy, J. and Gajalakshmi, P. (2022), "Soft computing techniques for the prediction and analysis of compressive strength of alkali-activated Alumino-silicate based strain-hardening Geopolymer composites", Silicon, 14(5), 1985-2008. https://doi.org/10.1007/s12633-021-00988-7.
  71. Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X. and Zhao, J. (2022), "Direct shear creep characteristics of sand treated with microbial-induced calcite precipitation", Int. J. Civil Eng., 1-15. https://doi.org/10.1007/s40999-021-00696-8.
  72. Zhang, J., Huang, Y., Wang, Y., Ma, G. (2020a), "Multi-objective optimization of concrete mixture proportions using machine learning and metaheuristic algorithms", Construct. Build. Mater., 253, 119208. https://doi.org/10.1016/j.conbuildmat.2020.119208.
  73. Zhang, J., Li, D. and Wang, Y. (2020b), "Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models", J. Cleaner Product., 258, 120665. https://doi.org/10.1016/j.jclepro.2020.120665.
  74. Zhao, S., Hu, F., Ding, X., Zhao, M., Li, C. and Pei, S. (2017), "Dataset of tensile strength development of concrete with manufactured sand", Data Brief, 11, 469-472. https://doi.org/10.1016/j.dib.2017.02.043
  75. Zhao, Y., Bai, C., Xu, C. and Foong, L.K. (2021a), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., 27(5), 745. http://dx.doi.org/10.12989/sss.2021.27.5.745.
  76. Zhao, Y. and Foong, L.K. (2022), "Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm", Measurement, 111405. https://doi.org/10.1016/j.measurement.2022.111405.
  77. Zhao, Y., Hu, H., Bai, L., Tang, M., Chen, H. and Su, D. (2021b), "Fragility analyses of bridge structures using the logarithmic piecewise function-based probabilistic seismic demand model", Sustainability, 13(14), 7814. https://doi.org/10.3390/su13147814.
  78. Zhao, Y., Hu, H., Song, C. and Wang, Z. (2022), "Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network: Abbreviated title: Various ANNs for modeling concrete strength", Measurement, 110993. https://doi.org/10.1016/j.measurement.2022.110993.
  79. Zhao, Y., Joseph, A.J.J.M., Zhang, Z., Ma, C., Gul, D., Schellenberg, A. and Hu, N. (2020a), "Deterministic snapthrough buckling and energy trapping in axially-loaded notched strips for compliant building blocks", Smart Mater. Struct., 29(2), 02LT03. https://doi.org/10.1088/1361-665X/ab6486.
  80. Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020b), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., 26(6), 753-763. https://doi.org/10.12989/sss.2020.26.6.753.
  81. Zhao, Y. and Wang, Z. (2022), "Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach", Struct. Multidiscipl. Optimiz., 65(6), 1-22. https://doi.org/10.1007/s00158-022-03260-7.
  82. Zhao, Y., Yan, Q., Yang, Z., Yu, X. and Jia, B. (2020c), "A novel artificial bee colony algorithm for structural damage detection", Adv. Civil Eng., 2020, https://doi.org/10.1155/2020/3743089.
  83. Zhao, Y., Zhong, X. and Foong, L.K. (2021c), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081.
  84. Zheng, W., Cheng, J., Wu, X., Sun, R., Wang, X. and Sun, X. (2022a), "Domain knowledge-based security bug reports prediction", Knowledge-Based Syst., 241, 108293. https://doi.org/10.1016/j.knosys.2022.108293.
  85. Zheng, Y., Jin, H., Jiang, C., Moradi, Z., Khadimallah, M.A. and Moayedi, H. (2022b), "Analyzing behavior of circular concretefilled steel tube column using improved fuzzy models", Steel Compos. Struct., 43(5), 625-637.
  86. Zhong, W., Pan, J., Wang, J. and Zhang, C. (2021), "Size effect in dynamic splitting tensile strength of concrete: Experimental investigation", Construct. Build. Mater., 270, 121449. https://doi.org/10.1016/j.conbuildmat.2020.121449.