References
- Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steelconfined concrete", Int. J. Civil Eng., 15(2), 213-221. https://doi.org/10.1007/s40999-016-0096-0
- Alshammari, B.M. and Guesmi, T. (2020), "New chaotic sunflower optimization algorithm for optimal tuning of power system stabilizers", J. Electric. Eng. Technol., 1-13. https://doi.org/10.1007/s42835-020-00470-1.
- Altintasi, C., Aydin, O., Taplamacioglu, M.C. and Salor, O. (2020), "Power system harmonic and interharmonic estimation using Vortex Search Algorithm", Electric Power Syst. Res., 182, 106187. https://doi.org/10.1016/j.epsr.2019.106187.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct/. 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
- Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.
- Chang, W. and Zheng, W. (2019), "Estimation of compressive strength of stirrup-confined circular columns using artificial neural networks", Struct. Concrete, 20(4), 1328-1339. https://doi.org/10.1002/suco.201800259.
- Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F.P, Shao, X.X. and He, X.Y. (2021a), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Sci. Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-88146-2.
- Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P., Gao, X. and He, X. (2021b), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Sci. Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-83376-wa.
- Chen, W., Chen, X., Peng, J., Panahi, M. and Lee, S. (2020), "Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer". Geosci. Front., 12(1), 93-107. https://doi.org/10.1016/j.gsf.2020.07.012.
- Cheng, H., Sun, L., Wang, Y. and Chen, X. (2021), "Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures", Int. J. Fatigue, 151, 106386. https://doi.org/10.1016/j.ijfatigue.2021.106386.
- Chintam, J.R. and Daniel, M. (2018), "Real-power rescheduling of generators for congestion management using a novel satin bowerbird optimization algorithm", Energies, 11(1), 183. https://doi.org/10.3390/en11010183
- Dogan, B. and O lmez, T. (2015), "A new metaheuristic for numerical function optimization: Vortex Search algorithm", Inform. Sci., 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Foong, L.K., Zhao, Y., Bai, C. and Xu, C. (2021), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., 27(5), 745-759. https://doi.org/10.12989/sss.2021.27.5.745.
- Gomes, G.F., da Cunha, S.S. and Ancelotti, A.C. (2019), "A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates", Eng. Comput., 35(2), 619-626. https://doi.org/10.1007/s00366-018-0620-8.
- Gomes, G.F. and Giovani, R.S. (2020), "An efficient two-step damage identification method using sunflower optimization algorithm and mode shape curvature (MSDBI-SFO)", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01128-2.
- Guo, Y., Yang, Y., Kong, Z. and He, J. (2022), "Development of similar materials for liquid-solid coupling and its application in water outburst and mud outburst model test of deep tunnel", Geofluids, 2022, https://doi.org/10.1155/2022/8784398.
- Han, Q., Gui, C., Xu, J. and Lacidogna, G. (2019), "A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm", Construct. Build. Mater., 226, 734-742. https://doi.org/10.1016/j.conbuildmat.2019.07.315.
- Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
- Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., AlAtabany, W. (2020), "A modified Henry gas solubility optimization for solving motif discovery problem", Neural Comput. Appl., 32(14), 10759-10771. https://doi.org/10.1007/s00521-019-04611-0.
- Hashim, F.A., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W. and Mirjalili, S. (2019), "Henry gas solubility optimization: A novel physics-based algorithm", Future Generation Compu. Syst., 101, 646-667. https://doi.org/10.1016/j.future.2019.07.015.
- Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y. and Zhao, Z. (2022), "Research progress on lunar and Martian concrete", Construct. Build. Mater., 343, 128117. https://doi.org/10.1016/j.conbuildmat.2022.128117a.
- Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic Behavior of Strengthened RC Columns under Combined Loadings", J. Bridge Eng., 27(6), 05022005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
- Huang, H., Zhang, W. and Yang, S. (2021a), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
- Huang, S., Lyu, Y., Sha, H. and Xiu, L. (2021b), "Seismic performance assessment of unsaturated soil slope in different groundwater levels", Landslides, 18(8), 2813-2833. https://doi.org/10.1007/s10346-021-01674-w
- Huang, Y., Zhang, J., Ann, F.T. and Ma, G. (2020), "Intelligent mixture design of steel fibre reinforced concrete using a support vector regression and firefly algorithm based multi-objective optimization model", Construct. Build. Mater., 260, 120457. https://doi.org/10.1016/j.conbuildmat.2020.120457.
- Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Construct. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.
- Lan, Y., Zheng, B., Shi, T., Ma, C., Liu, Y. and Zhao, Z. (2022), "Crack resistance properties of carbon nanotube-modified concrete", Mag. Concrete Res., 1-11. https://doi.org/10.1680/jmacr.21.00227.
- Liang. S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4.
- Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241.
- Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Nat. Haz., 1-37. https://doi.org/10.1007/s11069-021-05083-z.
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340.
- Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomatic. Nat. Haz. Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126.
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019c), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
- Moosavi, S.H.S. and Bardsiri, V.K. (2017), "Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation", Eng. Appl. Artif. Intell., 60, 1-15. https://doi.org/10.1016/j.engappai.2017.01.006
- Mostafa, M.A., Abdou, A.F., Abd El-Gawad, A.F. and El-Kholy, E. (2018), "SBO-based selective harmonic elimination for nine levels asymmetrical cascaded H-bridge multilevel inverter", Australian J. Electric. Electron. Eng., 15(3), 131-143. https://doi.org/10.1080/1448837X.2018.1528732
- Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008.
- Nazari, A. and Sanjayan, J.G. (2015), "Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine", Ceramics Int., 41(9), 12164-12177. https://doi.org/10.1016/j.ceramint.2015.06.037.
- Nguyen-Sy, T., Wakimm, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Construct. Build. Mater., 260, 119757. https://doi.org/10.1016/j.conbuildmat.2020.119757.
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H., Abdullahi, M.AM. (2019a), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geom. Nat. Haz. Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782.
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
- Nguyen, T., Kashani, A., Ngo, T. and Bordas, S. (2019b), "Deep neural network with high-order neuron for the prediction of foamed concrete strength", Comput. Aided Civil Infrastruct. Eng., 34(4), 316-332. https://doi.org/10.1111/mice.12422.
- Oreta, A.W. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/~ASCE!0733-9445~2003!129:4~554!.
- Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
- Sabbag, N. and Uyanik, O. (2018), "Determination of the reinforced concrete strength by apparent resistivity depending on the curing conditions", J. Appl. Geophy., 155, 13-25. https://doi.org/10.1016/j.jappgeo.2018.03.007.
- Sadowski, L., Nikoo, M., Shariq, M., Joker, E. and Czarnecki, S. (2019), "The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag", Materials, 12(2), 293. https://doi.org/10.3390/ma12020293.
- Sadrossadat, E. and Basarir, H. (2019), "An evolutionary-based prediction model of the 28-day compressive strength of highperformance concrete containing cementitious materials", Adv. Civil Eng. Mater., 8(3), 484-497. https://doi.org/10.1520/ACEM20190016.
- Shaheen, M.A., Hasanien, H.M., Mekhamer, S. and Talaat, H.E. (2019), "Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm", IEEE Access, 7, 109289-109300. https://doi.org/10.1109/ACCESS.2019.2933489.
- Shamshirband, S., Tavakkoli, A., Roy, C.B., Motamedi, S., Song, K.I., Hashim, R. and Islam, S.M. (2015), "Hybrid intelligent model for approximating unconfined compressive strength of cement-based bricks with odd-valued array of peat content (0-29%)", Powder Technol., 284, 560-570. https://doi.org/10.1016/j.powtec.2015.07.026.
- Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D. and Li, Y. (2022), "Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation", Soil Dyn. Earthq. Eng., 161, 107419. https://doi.org/10.1016/j.soildyn.2022.107419.
- Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022a), "Tensile and fracture properties of silicon carbide whiskermodified cement-based materials", Int. J. Concrete Struct. Mater., 16 (1), 1-13. https://doi.org/10.1186/s40069-021-00495-4.
- Shi, T., Liu, Y., Zhang, Y., Lan, Y., Zhao, Q., Zhao, Y. and Wang, H. (2022b), "Calcined attapulgite clay as supplementary cementing material: thermal treatment, hydration activity and mechanical properties", Int. J. Concrete Struct. Mater., 16(1), 1-10. https://doi.org/10.1186/s40069-021-00488-3
- Staudinger, J. and Roberts, P.V. (1996), "A critical review of Henry's law constants for environmental applications", Critical Rev. Environ. Sci. Technol., 26(3), 205-297. https://doi.org/10.1080/10643389609388492.
- Sun, J., Zhang, J., Gu, Y., Huang, Y., Sun, Y. and Ma, G. (2019), "Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression", Construct. Build. Mater., 207, 440-449. https://doi.org/10.1016/j.conbuildmat.2019.02.117.
- Tinoco, J., Correia, A.G., Cortez, P. (2014), "Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns", Comput. Geotech., 55, 132-140. https://doi.org/10.1016/j.compgeo.2013.08.010.
- Toz, M. (2020), "Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist", Appl. Soft Comput., 89, 106074. https://doi.org/10.1016/j.asoc.2020.106074
- Wang, J., Meng, Q., Zou, Y., Qi, Q., Tan, K., Santamouris, M. and He, B.J. (2022a), "Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: A review of its benefits, key parameters, and cobenefits approach". Water Res., 118755. https://doi.org/10.1016/j.watres.2022.118755.
- Wang, X., Yang, Y., Yang, R. and Liu, P. (2022b), "Experimental analysis of bearing capacity of basalt fiber reinforced concrete short columns under axial compression", Coatings, 12(5), 654. https://doi.org/10.3390/coatings12050654.
- Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
- Wu, D., Foong, L.K. and Lyu, Z. (2020), "Two neuralmetaheuristic techniques based on vortex search and backtracking search algorithms for predicting the heating load of residential buildings", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01074-z.
- Wu, P., Liu, A., Fu, J., Ye, X. and Zhao, Y. (2022a), "Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm", Eng. Struct., 272, 114962. https://doi.org/10.1016/j.engstruct.2022.114962.
- Wu, Z., Xu, J., Chen, H., Shao, L., Zhou, X. and Wang, S. (2022b), "Shear strength and mesoscopic characteristics of basalt fiber-reinforced loess after dry-wet cycles", J. Mater. Civil Eng., 34(6), 04022083. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004225.
- Wu, Z., Xu, J., Li, Y. and Wang, S. (2022c), "Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil", Int. J. Geomech., 22(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002415.
- Xie, W., Xing, C., Wang, J., Guo, S., Guo, M.W. and Zhu, L.F. (2020), "Hybrid Henry Gas solubility optimization algorithm based on the Harris Hawk Optimization", IEEE Access, 8, 144665-144692. https://doi.org/10.1109/ACCESS.2020.3014309.
- Yan, B., Ma, C., Zhao, Y., Hu, N. and Guo, L. (2019), "Geometrically enabled soft electroactuators via laser cutting", Adv. Eng. Mater., 21(11), 1900664. https://doi.org/10.1002/adem.201900664.
- Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074.
- Ye, X., Moayedi, H., Khari, M. and Foong, K.L. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., 26, https://doi.org/10.12989/sss.2020.26.3.263.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X. and Zhao, J. (2022), "Direct shear creep characteristics of sand treated with microbial-induced calcite precipitation", Int. J. Civil Eng., 1-15. https://doi.org/10.1007/s40999-021-00696-8.
- Zhang, C. and Ali, A. (2021), "The advancement of seismic isolation and energy dissipation mechanisms based on friction", Soil Dyn. Earthq. Eng., 146, 106746. https://doi.org/10.1016/j.soildyn.2021.106746.
- Zhang, J., Li, D. and Wang, Y. (2020a), "Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models", J. Cleaner Product., 258, 120665. https://doi.org/10.1016/j.jclepro.2020.120665.
- Zhang, J., Ma, G., Huang, Y., Aslani, F. and Nener, B. (2019), "Modelling uniaxial compressive strength of lightweight selfcompacting concrete using random forest regression", Construct. Build. Mater., 210, 713-719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.
- Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and Li, J. (2020b), "Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x.
- Zhang, J. and Wang, Y. (2020), "Evaluating the bond strength of FRP-to-concrete composite joints using metaheuristic-optimized least-squares support vector regression", Neur. Comput. Appl., 1-15. https://doi.org/10.1007/s00521-020-05191-0.
- Zhao, S., Hu, F., Ding, X., Zhao, M., Li, C. and Pei, S. (2017), "Dataset of tensile strength development of concrete with manufactured sand", Data Brief, 11, 469-472. https://doi.org/10.1016/j.dib.2017.02.043.
- Zhao, Y. and Foong, L.K. (2022), "Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm", Measurement, 111405. https://doi.org/10.1016/j.measurement.2022.111405.
- Zhao, Y., Hu, H., Bai, L., Tang, M., Chen, H. and Su, D. (2021a), "Fragility analyses of bridge structures using the logarithmic piecewise function-based probabilistic seismic demand model", Sustainability, 13(14), 7814. https://doi.org/10.3390/su13147814.
- Zhao, Y., Hu, H., Song, C. and Wang, Z. (2022), "Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network", Measurement, 194, 110993. https://doi.org/10.1016/j.measurement.2022.110993.
- Zhao, Y., Joseph, A.J.J.M., Zhang, Z., Ma, C., Gul, D., Schellenberg, A. and Hu, N. (2020a), "Deterministic snapthrough buckling and energy trapping in axially-loaded notched strips for compliant building blocks", Smart Mater. Struct., 29(2), 02LT03. https://doi.org/10.1088/1361-665X/ab6486.
- Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020b), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., 26(6), 753-763. https://doi.org/10.12989/sss.2020.26.6.753.
- Zhao, Y. and Wang, Z. (2022), "Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach", Struct. Multidiscipl. Optimiz., 65(6), 1-22. https://doi.org/10.1007/s00158-022-03260-7.
- Zhao, Y., Yan, Q., Yang, Z., Yu, X. and Jia, B. (2020c), "A novel artificial bee colony algorithm for structural damage detection", Adv. Civil Eng., 2020, https://doi.org/10.1155/2020/3743089.
- Zhao, Y., Zhong, X., Foong, L.K. (2021b), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081.
- Zhu, Z., Yunlong, W. and Liang, Z. (2022), "Mining-induced stress and ground pressure behavior characteristics in mining a thick coal seam with hard roofs", Front. Earth Sci., 157. https://doi.org/10.3389/feart.2022.843191