DOI QR코드

DOI QR Code

Continuous element method for aeroacoustics' waves in confined ducts

  • Khadimallah, Mohamed A. (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar) ;
  • Casimir, Jean B. (Institut Superieur de Mecanique de Paris, Quartz (EA 7393)) ;
  • Taieb, Lamjed H. (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.11.03
  • 심사 : 2022.08.10
  • 발행 : 2022.10.25

초록

The continuous elements method, also known as the dynamic stiffness method, is effective for solving structural dynamics problems, especially over a large frequency range. Before applying this method to fluid-structure interactions, it is advisable to check its validity for pure acoustics, without considering the different coupling parameters. This paper describes a procedure for taking wave propagation into account in the formulation of a Dynamic Stiffness Matrix. The procedure is presented in the context of the harmonic response of acoustic pressure. This development was validated by comparing the harmonic response calculations performed using the continuous element model with the analytical solution. In addition, this paper illustrates the application of this method to a simple compressible flow problem, since it has been applied solely to structural problems to date.

키워드

참고문헌

  1. Moraveji, A. and Toghraie, D. (2017), "Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters", Int. J. Heat Mass Transf., 113, 432-443. http://doi.org/10.1016/j.ijheatmasstransfer.2017.05.095.
  2. Rahmati, A.R., Akbari, O.A., Marzban, A., Toghraie, D., Karimi, R. and Pourfattah, F. (2018), "Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions", Therm. Sci. Eng. Prog., 5, 263-277. https://doi.org/10.1016/j.tsep.2017.12.006.
  3. Batoz. J.L. and Dhatt. G. (2002), "Modelisation des structures par elements finis'', Paris: Hermes, 3.
  4. Ben Tahar. M. and Goy. E., (1998), "Resolution of a vibro acoustic problem in the presence of a nonuniform mean flow'', Proceedings of the Forth AIAA Joint Aeroacoustics Conference, Toulouse, France, June.
  5. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  6. Beranet, L.L. and Ver, I.L. (1992), Noise and Vibration Control Engineering', John Wiley & Sons, Inc., 374. https://doi.org/10.1002/9780470172568.
  7. Bonnet-Ben Dhia. A.S., Legendre. G. and Luneville E. (2001), "Mathematical analysis of Galbrun's equation with uniform flow'', Comptes Rendus de l'Academie des Sciences, Mechanics, 329(8), 601-606. https://doi.org/10.1016/S1620-7742(01)01373-3.
  8. Casimir. J. B., Nguyen. M.C. and Tawfiq. I. (2007), "Thick shells of revolution: Derivation of the dynamic stiffness matrix of continuous elements and application to a tested cylinder'', Comput. Struct., 85(23-24), 1845-1857. https://doi.org/10.1016/j.compstruc.2007.03.002.
  9. Dabiri, S., Khodabandeh, E., Poorfar, A.K., Mashayekhi, R., Toghraie, D. and Zade, S.A.A. (2018), "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator", Energy, 153, 17-26. https://doi.org/10.1016/j.energy.2018.04.025.
  10. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019). "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  11. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  12. Gabard. G., Treyssede. F. and Ben Taher. M. (2004), "A numerical method for vibro-acoustic problems with sheared mean flows'', J. Sound Vib., 272(991), 1011. https://doi.org/10.1016/j.jsv.2003.03.007.
  13. Kavusi, H. and Toghraie, D. (2017), "A comprehensive study of the performance of a heat pipe by using of various nanofluids", Adv. Powder Technol., 28(11), 3074-3084. https://doi.org/10.1016/j.apt.2017.09.022.
  14. Kar, V.R., Panda, S.K., and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.
  15. Khadimallah. M.A., Casimir. J.B., Chafra, M. and Smaoui, H., (2011), "Dynamic stiffness matrix of an axisymmetric shell and response to harmonic distributed loads'', Comput. Struct., 89(5-6), 467-475. https://doi.org/10.1016/j.compstruc.2010.11.017.
  16. Kocal, T., and Akbarov, S.D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71(5), 577-601. https://doi.org/10.12989/sem.2019.71.5.577.
  17. Li, X.M., Leung, R.C.K. and So, R.M.C. (2006), "One-step aeroacoustics simulation using lattice Boltzmann method", AIAA J., 44(1), 78-89. https://doi.org/10.2514/1.15993
  18. Magrab. E.B. (1975), Environmental Noise Control, John Wiley & Sons, New York, U.S.A.
  19. Marie, S., Ricot, D. and Sagaut, P. (2009), "Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228, 1056-1070. https://doi.org/10.1016/j.jcp.2008.10.021.
  20. Redon. E. (1996), "Etude de la propagation acoustique en espace confine en presence d'ecoulement non isotherme par la methode des elements finis'', PhD report, Universite de Poitiers, Ecole Superieure d'Ingenieurs de Poitiers, Poitiers, France.
  21. Sadoughifar, A., Farhatnia, F., Izadinia, M., and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
  22. Safaei, B., Khoda, F.H., and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  23. Selamet A., Radavich PM. (1997), "The acoustic attenuation performance of concentric expansion chambers: an analytical, computational and experimental investigation'', J. Sound Vib., 201(4),407-426. https://doi.org/10.1006/jsvi.1996.0720.
  24. Shahsavari, D., Karami, B., and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  25. Sharma, K.V., Straka, R. and Tavares, F.W. (2020), "Current status of Lattice Boltzmann Methods applied to aerodynamic, aeroacoustic, and thermal flows", Prog. Aerosp. Sci., 115, 100616. https://doi.org/10.1016/j.paerosci.2020.100616.
  26. Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S., and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407-426. https://doi.org/10.12989/sem.2020.73.4.407.
  27. Tahar, M. and Dias, J.P. (1999), "Propagation et rayonnement acoustique en presence d'un ecoulement non uniforme par une methode de couplage FEM/BEM'', Revue Europeenne des Elements Finis, 8, 497-524. https://doi.org/10.1080/12506559.1999.10511395.
  28. Toghraie, D. (2016), "Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface", Physica E, 84, 454-465. http://doi.org/10.1016/j.physe.2016.07.017.
  29. Torabi, J., and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. ttps://doi.org/10.12989/sem.2018.68.3.313.
  30. Tsuji. T., Tsuchiya. T. and Kagawa.Y. (2002), "Finite element and boundary element modelling for the acoustic wave transmission in mean flow medium'', J. Sound Vib., 255(5), 849-866. https://doi.org/10.1006/jsvi.2001.4189.
  31. Weidong, S.H.A.O. and Jun, L.I. (2019), "Review of lattice Boltzmann method applied to computational aeroacoustics", Arch. Acoust., 44(2), 215-238. https://doi.org/10.24425/aoa.2019.128486.
  32. Zhang, J.F., Liu, Q.S., Ge, Y.J. and Zhao, L. (2019), "Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells", Struct. Eng. Mech., 72(5), 541-555. https://doi.org/10.12989/sem.2019.72.5.541.