DOI QR코드

DOI QR Code

Performance Comparison of Steel Dampers with or without Lateral Deformation Prevention Details and Strut Shapes

횡변형 방지 상세 유무 및 스트럿 형상에 따른 강재댐퍼의 성능 비교

  • Lee, Hyun-Ho (Department of Architecture & Fire Safety, Dongyang University)
  • 이현호 (동양대학교 건축소방안전학과)
  • Received : 2022.08.29
  • Accepted : 2022.10.11
  • Published : 2022.10.30

Abstract

In this study, the experimental results of 7 dampers with the same strut height and similar cross-sectional area were compared based on the existing research results on steel dampers with rocking behavior. As steel plate dampers, SI-260, SV-260, SS-260 without Lateral deformation prevention detail(Ldpd), I-1, V-1, S-1 with Ldpd, and R20-260 with steel rod damper were evaluated. In addition, R15-260, which has a cross-sectional area of 0.56 times than other dampers, was also reviewed to appropriately evaluate the behavior of the steel rod damper. An important study result is the application superiority of the steel rod damper, which improved the unidirectional behavior of the steel plate dampers. This was proved in the moment-resistance capacity and displacement ratio evaluation. As a result of the evaluation, the R20-260, a steel bar damper, was evaluated as having the best performance. In addition, it is judged to have sufficient seismic resistance as it shows deformability up to a displacement ratio of 2.0.

본 연구에서는 록킹 거동을 하는 강재댐퍼에 대한 기존 연구결과를 근간으로 스트럿 높이가 동일하고 단면적이 유사한 댐퍼 7개의 실험결과를 비교하였다. 강판댐퍼로 Ldpd(횡변형 방지 상세) 없는 SI-260, SV-260, SS-260, Ldpd 있는 I-1, V-1, S-1 및 강봉댐퍼인 R20-260을 평가하였다. 또한 단면적이 0.56배인 R15-260도 같이 평가하여, 강봉댐퍼 거동 성능을 적절히 평가하고자 하였다. 중요한 연구결과는 강판댐퍼의 일방향성을 개선한 강봉댐퍼 적용의 우수성이며, 이는 모멘트 저항 능력 및 변위비 평가에서도 확인할 수 있었다. 평가결과, 강봉댐퍼인 R20-260의 성능이 가장 우수한 것으로 평가되었다. 또한 변위비 2.0까지 변형 능력을 나타내어, 충분한 내진성능을 보유한 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022R1F1A1063821).

References

  1. Belleeri A, Schoettler M, Restrepo J. I., and Fleischman R. B. (2014), Dynamic Behavior of Rocking and Hybrid Cantilever Walls in a PrecastCconcrete Building, ACI Structural Journal, May-June.
  2. Hashemi, A., Zarnani, P, Masoudnia., and Quenneville, P.(2017), Seismic Resilient Lateral Load Resisting System for Timber Structures, Construction and Building Materials, 149, pp.432-443. https://doi.org/10.1016/j.conbuildmat.2017.05.112
  3. Lee, H. H. (2019), Deformation capacity of steel rod damper, Proceeding of the Korea Concrete Institute, 31(2), 155-156.
  4. Lee, H. H. (2019), Rocking Behavior of Steel Dampers according to Strut Shapes and Heights of Steel dampers. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 45-52. https://doi.org/10.11112/JKSMI.2019.23.4.45
  5. Lee, H. H. (2020), Steel Rod damper and Rocking Behavior, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 1-9. https://doi.org/10.11112/JKSMI.2020.24.6.1
  6. Lee, H. H. (2020), Rocking Behavior of Steel Damper Shape, Journal of the Korean Association for Spatial Structures, 20(4), 45-50. https://doi.org/10.9712/KASS.2020.20.4.45
  7. Lee, H. H. (2021), Hysteretic Behavior of Steel Damper using Guide Plate and Channel, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(3), 61-68. https://doi.org/10.11112/JKSMI.2017.21.4.061
  8. Lee, H. H. (2021), The Effect of Preventing Lateral Deformation of the Clamp Type Steel Damper in Rocking Behavior, Journal of the Korean Association for Spatial Structures, 25(5), 141-148
  9. Marriott, D., Pampanin, S., Bull, D., et al. (2008), Dynamic Testing of Precast, Post-tensioned Rocking Wall Systems with Alternative Dissipating Solutions, Bulletin of the New Zealand Society of Earthquake Engineering, 41(2), pp.90-103. https://doi.org/10.5459/bnzsee.41.2.90-103
  10. Oh, S. H., and Chang, I. H. (2000), An eexperimental study on hysterestic characterestic of braced frames with slit plate damper, Proceeding of the Architectural Institude of Korea, 20(2), 349-352.