DOI QR코드

DOI QR Code

Characterization and Production of Low Molecular Weight of Biopolymer by Weisella sp. strain YSK01 Isolated from Traditional Fermented Foods

전통 발효식품으로부터 분리된 Weisella sp. strain YSK01에 의한 저분자 Biopolymer 발효생산 공정 및 생성물의 특성

  • Cho, Hyun Ah (Department of Industry Convergence Engineering, Soonchunhyang University) ;
  • Kim, Nam Chul (Research Institute of Natural Well Food Company) ;
  • Yoo, Sun Kyun (Research Institute of Natural Well Food Company)
  • 조현아 (순천향대학교 산업융합공학과) ;
  • 김남철 (천연웰푸드 연구개발실) ;
  • 유선균 (천연웰푸드 연구개발실)
  • Received : 2022.09.20
  • Accepted : 2022.10.24
  • Published : 2022.10.30

Abstract

Although probiotics have been shown to improve health when consumed, recent studies have reported that they can cause unwanted side effects due to bacterial-human interactions. Therefore, the importance of prebiotics that can form beneficial microbiome in the gut has been emphasized. This study isolated and identified bacteria capable of producing biopoymer as a candidate prebiotic from traditional fermented foods. The isolated and identified strain was named WCYSK01 (Wissella sp. strain YSK01). The composition of the medium for culturing this strain was prepared by dissolving 3 g K2HPO4, 0.2 g MgSO4, 0.05 g CaCl2, 0.1 g NaCl in 1 L of distilled water. The LMBP(low molecular weight biopoymers) produced when fermentation was performed with sucrose and maltose as substrates were mainly consisted of DP3 (degree of polymer; isomaltotriose), DP4 (isomaltotetraose), DP5 (isomaltopentaose), and DP6 (isomaltoheptaose). The optimization of LMBP (low molecular weight of biopolymer) production was performed using the response surface methodology. The fermentation process temperature range of 18 to 32℃, the fermentation medium pH in the range of 5.1 to 7.9. The yield of LMBP production by the strain was found to be significantly affected by q fermentation temperature and pH. The optimal fermentation conditions were found at the normal point, and the production yield was more than 75% at pH 7.5 and temperature of 23℃.

Keywords

References

  1. S. Doron, D. R. Snydman, "Risk and safety of probiotics", Clin Infect Dis, Vol.60, pp. 129-234, (2015).
  2. G. T. Rijkers, W. M. de. Vos, R. J. Brummer, L. Morelli, G. Corthier, P. Marteau, "Health benefits and health claims of probiotics: Bridging science and marketing", British Journal of Nutrition, Vol.106, No.9 pp. 1291-1296, (2011). https://doi.org/10.1017/S000711451100287X
  3. J. M. Hamilton-Miller, G. R. Gibson, W. Bruck, "Some insights into the derivation and early uses of the word probiotic", Br. J. Nutr, Vol.90, No.4 pp. 845-849, (2003). https://doi.org/10.1079/BJN2003954
  4. C. Hill, F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, M. E. Sanders, "Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic", Gastroenterology & Hepatology, Vol.11, No.8 pp. 506-514, (2014).
  5. S. C. Singhi, S. Kumar, "Probiotics in critically ill children", F1000Res, Vol.5, pp. 407, (2016). https://doi.org/10.12688/f1000research.7630.1
  6. F. Durchschein, W. Petritsch, H. F. Hammer, "Diet therapy for inflammatory bowel diseases", The established and the new. World J Gastroenterol, Vol.22, No.7 pp. 2179-2194, (2016). https://doi.org/10.3748/wjg.v22.i7.2179
  7. J. Slavin, "Fiber and prebiotics: mechanisms and health benefits", Nutrients, Vol.5, No.4 pp. 1417-1435, (2013). https://doi.org/10.3390/nu5041417
  8. B. Bindels. Laure, M. Delzenne. Nathalie, D. Cani. Patrice, Jens. Walter, "Towards a more comprehensive concept for prebiotics", Gastroenterology & Hepatology, Vol.12, No.5 pp. 303-310, (2015).
  9. F. Enam, T. J. Mansell, "Prebiotics: tools to manipulate the gut microbiome and metabolome", Journal of Industrial Microbiology & Biotechnology, Vol.46, No.9-10 pp. 1445-1459, (2019). https://doi.org/10.1007/s10295-019-02203-4
  10. S. A. Zaman. S. R. Sarbini. "The potential of resistant starch as a prebiotic", Critical Reviews in Biotechnology, Vol.36, No.3 pp. 578-584, (2015).
  11. C. K. Rajendran, S. R. Okolie, C. L. Udenigwe, C. C. Mason B, "Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health", Journal of Food Biochemistry, Vol.41, No.5 pp. 1745-4514, (2017).
  12. A. Bird, M. Conlon, C. Christophersen, D. Topping, "Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics", Beneficial Microbes, Vol.1, No.4 pp. 423-431, (2010). https://doi.org/10.3920/BM2010.0041
  13. B. P. Lamsal, "Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides", Journal of the Science of Food and Agriculture, Vol.92, No.10 pp. 2020-2028, (2012). https://doi.org/10.1002/jsfa.5712
  14. M. P. Arena, G. Caggianiello, D. Fiocco, P. Russo, M. Torelli, G. Spano, V. Capozzi, "Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria", International Journal of Molecular Sciences, Vol.15, No.2 pp. 3025-3039, (2014). https://doi.org/10.3390/ijms15023025
  15. J. A. Delcour, P. Aman, C. H. Courtin, B. R. Hamaker, K. Verbeke, "Prebiotics, Fermentable Dietary Fiber, and Health Claims", Advances in Nutrition, Vol.7, No.1 pp. 1-4, (2016). https://doi.org/10.3945/an.115.010546
  16. M. D. Collins, J. Samelis, J. Metaxopoulos, S. Wallbanks, "Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species", Journal of Applied Microbiology, Vol.75, No.6 pp. 595-603, (1993).
  17. Bjorkroth. Johanna, Holzapfel, Wilhelm, "Genera Leuconostoc, Oenococcus and Weissella", The Prokaryotes, pp. 267-319, (2006).
  18. Kang. Wook. Lee, Ji. Yeong. Park, Hee. Rok. Jeong, Ho. Jin. Heo, Nam. Soo. Han, Jeong Hwan. Kim, "Probiotic properties of Weissella strains isolated from human faeces", Anaerobe, Vol.18, No.1 pp. 96-102, (2012). https://doi.org/10.1016/j.anaerobe.2011.12.015
  19. Dilna. Sasidharan. Vasanthakumari, Surya. Harikumar, Divya. Jayakumar. Beena, Ashok. Pandey, Kesavan. Madhavan. Nampoothiri, "Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria", Applied Biochemistry and Biotechnology, Vol.176, No.2 pp. 440-453, (2015). https://doi.org/10.1007/s12010-015-1586-2
  20. H. S. Yu, H. J. Jang, N. K. Lee, H. D. Paik, "Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi", LWT, Vol.112, pp. 108-229, (2019).
  21. D. Goffin, N. Delzenne, C. Blecker, E. Hanon, C. Deroanne, M. Paquot. "Will isomalto-oligosaccharides, a wellestablished functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics.", Food Sci Nutr, Vol.51, No.5 pp. 394-409, (2011).
  22. Q. Shi, M. Juvonen, Y. Hou, I. Kajala, A. Nyyssola, N. H. Maina, H. Maaheimo, L. Virkki, M. Tenkanen, "Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase", Food Chem, Vol.1, No.190 pp. 226-236, (2016).
  23. M. Dols, M. R. Simeon, R. M. Willemot, M. R. Vignon, P. F. Monsan, "Structural characterization of the maltose acceptorproducts synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase", Carbohydr Res, Vol.305, No.3-4 pp. 549-59, (1997). https://doi.org/10.1016/S0008-6215(97)10063-5
  24. Y. Hu, V. Winter, X. Y. Chen, M. G. Ganzle, "Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase from Weissella cibaria", Food Res Int, Vol.99, No.1 pp. 603-611, (2017). https://doi.org/10.1016/j.foodres.2017.06.026
  25. S. hukla, Q. Shi, N. H. Maina, M. Juvonen, Maijatenkanen, A. Goyal, "Weissella confusa Cab3 dextransucrase: properties and in vitro synthesis of dextran and glucooligosaccharides", Carbohydr Polym, Vol.101, No.30 pp. 554-64, (2014). https://doi.org/10.1016/j.carbpol.2013.09.087
  26. Qiao. Shi, Yaxi. Hou, Minna. Juvonen, Paivi. Tuomainen, Ilkka. Kajala, Shraddha. Shukla, Arun. Goyal, Hannu. Maaheimo, Kati. Katina, Maija. Tenkanen, "Optimization of Isomaltooligosaccharide Size Distribution by Acceptor Reaction of Weissella confusa Dextransucrase and Characterization of Novel α-(1→2)-Branched Isomaltooligosaccharides", J. Agric. Food Chem, Vol.64, No.16 pp. 3276 -3286, (2016). https://doi.org/10.1021/acs.jafc.6b01356