DOI QR코드

DOI QR Code

Bioremediation Options for Nuclear Sites a Review of an Emerging Technology

  • Robinson, Callum (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester) ;
  • White-Pettigrew, Matthew (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester) ;
  • Shaw, Samuel (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester) ;
  • Morris, Katherine (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester) ;
  • Graham, James (National Nuclear Laboratory, Central Laboratory) ;
  • Lloyd, Jonathan R. (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
  • Received : 2022.05.18
  • Accepted : 2022.08.09
  • Published : 2022.09.30

Abstract

60+ Years of nuclear power generation has led to a significant legacy of radioactively contaminated land at a number of nuclear licenced "mega sites" around the world. The safe management and remediation of these sites is key to ensuring there environmental stewardship in the long term. Bioremediation utilizes a variety of microbially mediated processes such as, enzymatically driven metal reduction or biominerialisation, to sequester radioactive contaminants from the subsurface limiting their migration through the geosphere. Additionally, some of these process can provide environmentally stable sinks for radioactive contaminants, through formation of highly insoluble mineral phases such as calcium phosphates and carbonates, which can incorporate a range of radionuclides into their structure. Bioremediation options have been considered and deployed in preference to conventional remediation techniques at a number of nuclear "mega" sites. Here, we review the applications of bioremediation technologies at three key nuclear licenced sites; Rifle and Hanford, USA and Sellafield, UK, in the remediation of radioactively contaminated land.

Keywords

Acknowledgement

We acknowledge financial support from EPSRC, National Nuclear Laboratory and the Nuclear Decommissioning Authority through EPSRC ICASE PhD studentship (CR; 19000127) and NDA PhD Bursary (MWP; EP/S022295/1). We also acknowledge access to the EPSRC NNUF RADER Facility (EP/T011300/1) for CR and MWP in their projects.

References

  1. R.E.H. Sims, H.H. Rogner, and K. Gregory, "Carbon Emission and Mitigation Cost Comparisons Between Fossil Fuel, Nuclear and Renewable Energy Resources for Electricity Generation", Energy Policy, 31(13), 1315-1326 (2003). https://doi.org/10.1016/S0301-4215(02)00192-1
  2. B. Gu, D.B. Watson, D.H. Phillips, and L. Liang, "Biogeochemical, Mineralogical, and Hydrological Characteristics of an Iron Reacitve Barrier Used for Treatment of Uranium and Nitrate", in Handbook of Groundwater Remediation Using Permeable Reactive Barriers, D. Naftz, S.J. Morrison, C.C. Fuller, J.A. Davis, eds., 305-342, Elsevier, Cambridge (2002).
  3. L. Newsome, K. Morris, and J.R. Lloyd, "The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides", Chem. Geol., 363, 164-184 (2014). https://doi.org/10.1016/j.chemgeo.2013.10.034
  4. K.T. Finneran, R.T. Anderson, K.P. Nevin, and D.R. Lovley, "Potential for Bioremediation of UraniumContaminated Aquifers With Microbial U (VI) Reduction", Soil Sediment Contam. An Int. J., 11(3), 339-357 (2002). https://doi.org/10.1080/20025891106781
  5. G.T.W. Law, A. Geissler, J.R. Lloyd, F.R. Livens, C. Boothman, J.D.C. Begg, M.A. Denecke, J. Rothe, K. Dardenne, I.T. Burke, J.M. Charnock, and K. Morris, "Geomicrobiological Redox Cycling of the Transuranic Element Neptunium", Environ. Sci. Technol., 44(23), 8924-8929 (2010). https://doi.org/10.1021/es101911v
  6. R.E. Wildung, S.W. Li, C.J. Murray, K.M. Krupka, Y. Xie, N.J. Hess, and E.E. Roden, "Technetium Reduction in Sediments of a Shallow Aquifer Exhibiting Dissimilatory Iron Reduction Potential", FEMS Microbiol. Ecol., 49(1), 151-162 (2004). https://doi.org/10.1016/j.femsec.2003.08.016
  7. J.M. McBeth, G. Lear, J.R. Lloyd, F.R. Livens, K. Morris, and I.T. Burke, "Technetium Reduction and Reoxidation in Aquifer Sediments", Geomicrobiol. J., 24(3-4), 189-197 (2007). https://doi.org/10.1080/01490450701457030
  8. D.E. Latta, M.I. Boyanov, K.M. Kemner, E.J. O'Loughlin, and M.M. Scherer, "Abiotic Reduction of Uranium by Fe(II) in Soil", Appl. Geochemistry, 27(8), 15121524 (2012).
  9. D.R. Brookshaw, R.A.D. Pattrick, P. Bots, G.T.W. Law, J.R. Lloyd, J.F.W. Mosselmans, D.J. Vaughan, K. Dardenne, and K. Morris, "Redox Interactions of Tc(VII), U(VI), and Np(V) With Microbially Reduced Biotite and Chlorite", Environ. Sci. Technol., 49(22), 13139-13148 (2015). https://doi.org/10.1021/acs.est.5b03463
  10. I.T. Burke, C. Boothman, J.R. Lloyd, R.J.G. Mortimer, F.R. Livens, and K. Morris, "Effects of Progressive Anoxia on the Solubility of Technetium in Sediments", Environ. Sci. Technol., 39(11), 4109-4116 (2005). https://doi.org/10.1021/es048124p
  11. W.H. Ko and F.K. Hora, "Production of Phospholipases by Soil Microorganisms", Soil Sci., 110(5), 355-358 (1970). https://doi.org/10.1097/00010694-197011000-00010
  12. W. Siuda and R. J. Chrost, "Utilization of Selected Dissolved Organic Phosphorus Compounds by Bacteria in Lake Water Under non-Limiting Orthophosphate Conditions", Pol. J. Environ. Stud., 10(6), 475-483 (2001).
  13. L.E. Macaskie, R.M. Empson, A.K. Cheetham, C.P. Grey, and A.J. Skarnulis, "Uranium Bioaccumulation by a Citrobacter sp. as a Result of Enzymically Mediated Growth of Polycrystalline HUO2PO4", Science, 257(5071), 782-784 (1992). https://doi.org/10.1126/science.1496397
  14. W. Gao and A.J. Francis, "Reduction of Uranium(VI) to Uranium(IV) by Clostridia", Appl. Environ. Microbiol., 74(14), 4580-4584 (2008). https://doi.org/10.1128/AEM.00239-08
  15. A. Cleary, J.R. Lloyd, L. Newsome, S. Shaw, C. Boothman, G. Boshoff, N. Atherton, and K. Morris, "Bioremediation of Strontium and Technetium Contaminated Groundwater Using Glycerol Phosphate", Chem. Geol., 509, 213-222 (2019). https://doi.org/10.1016/j.chemgeo.2019.02.004
  16. J.R. Lloyd, R.T. Anderson, and L.E. Macaskie, "Bioremediation of Metals and Radionuclides", in Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup, 2nd ed., R.M. Atlas and J.C. Philp, eds., 293-317, ASM Press, Washington (2014).
  17. C.L. Thorpe, J.R. Lloyd, G.T.W. Law, I.T. Burke, S. Shaw, N.D. Bryan, and K. Morris, "Strontium Sorption and Precipitation Behaviour During Bioreduction in Nitrate Impacted Sediments", Chem. Geol., 306-307, 114-122 (2012). https://doi.org/10.1016/j.chemgeo.2012.03.001
  18. G.M. Gadd, "Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment", J. Chem. Technol. Biotechnol., 84(1), 13-28 (2009). https://doi.org/10.1002/jctb.1999
  19. L.E. Macaskie, "The Application of Biotechnology to the Treatment of Wastes Produced From the Nuclear Fuel Cycle: Biodegradation and Bioaccumulation as a Means of Treating Radionuclide-Containing Streams", Crit. Rev. Biotechnol., 11(1), 41-112 (1991). https://doi.org/10.3109/07388559109069183
  20. S.V. Avery, "Caesium Accumulation by Microorganisms: Uptake Mechanisms, Cation Competition, Compartmentalization and Toxicity", J. Ind. Microbiol., 14(2), 76-84 (1995). https://doi.org/10.1007/BF01569888
  21. S.V. Avery, "Microbial Interactions With Caesium-Implications for Biotechnology", J. Chem. Technol. Biotechnol., 62(1), 3-16 (1995). https://doi.org/10.1002/jctb.280620102
  22. K.H. Williams, J.R. Bargar, J.R. Lloyd, and D.R. Lovley, "Bioremediation of Uranium-Contaminated Groundwater: A Systems Approach to Subsurface Biogeochemistry", Curr. Opin. Biotechnol., 24(3), 489-497 (2013). https://doi.org/10.1016/j.copbio.2012.10.008
  23. K.M. Campbell, R.K. Kukkadapu, N.P. Qafoku, A.D. Peacock, E. Lesher, K.H. Williams, J.R. Bargar, M.J. Wilkins, L. Figueroa, J. Ranville, J.A. Davis, and P.E. Long, "Geochemical, Mineralogical and Microbiological Characteristics of Sediment From a Naturally Reduced Zone in a Uranium-Contaminated Aquifer", Appl. Geochemistry, 27(8), 1499-1511 (2012). https://doi.org/10.1016/j.apgeochem.2012.04.013
  24. R.T. Anderson, H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe, and D.R. Lovley, "Stimulating the In Situ Activity of Geobacter Species to Remove Uranium From the Groundwater of a Uranium-Contaminated Aquifer", Appl. Environ. Microbiol., 69(10), 5884-5891 (2003). https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  25. J.M. Zachara, P.E. Long, J. Bargar, J.A. Davis, P. Fox, J.K. Fredrickson, M.D. Freshley, A.E. Konopka, C. Liu, J.P. McKinley, M.L. Rockhold, K.H. Williams, and S.B. Yabusaki, "Persistence of Uranium Groundwater Plumes: Contrasting Mechanisms at two DOE Sites in the Groundwater-River Interaction Zone", J. Contam. Hydrol., 147, 45-72 (2013). https://doi.org/10.1016/j.jconhyd.2013.02.001
  26. K.H. Williams, P.E. Long, J.A. Davis, M.J. Wilkins, A.L. N'Guessan, C.I. Steefel, L. Yang, D. Newcomer, F.A. Spane, L.J. Kerkhof, L. Mcguinness, R. Dayvault, and D.R. Lovley, "Acetate Availability and its Influence on Sustainable Bioremediation of Uranium-Contaminated Groundwater", Geomicrobiol. J., 28(5-6), 519-539 (2011). https://doi.org/10.1080/01490451.2010.520074
  27. L.T. Townsend, S. Shaw, N.E.R. Ofili, N. Kaltsoyannis, A.S. Walton, J.F.W. Mosselmans, T.S. Neill, J.R. Lloyd, S. Heath, R. Hibberd, and K. Morris, "Formation of a U(VI)-Persulfide Complex During Environmentally Relevant Sulfidation of Iron (Oxyhydr)Oxides", Environ. Sci. Technol., 54(1), 129-136 (2019).
  28. J.R. Bargar, K.H. Williams, K.M. Campbell, P.E. Long, J.E. Stubbs, E.I. Suvorova, J.S. Lezama-Pacheco, D.S. Alessi, M. Stylo, S.M. Webb, J.A. Davis, D.E. Giammar, L.Y. Blue, and R. Bernier-Latmani, "Uranium Redox Transition Pathways in Acetate-Amended Sediments", Proc. Natl. Acad. Sci. U.S.A., 110(12), 4506- 4511 (2013). https://doi.org/10.1073/pnas.1219198110
  29. S.P. Hyun, J.A. Davis, K. Sun, and K.F. Hayes, "Uranium (VI) Reduction by Iron(II) Monosulfide Mackinawite", Environ. Sci. Technol., 46(6), 3369-3376 (2012). https://doi.org/10.1021/es203786p
  30. Y.Bi, S.P. Hyun, R.K. Kukkadapu, and K.F. Hayes, "Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic Nanocrystalline Mackinawite", Geochim. Cosmochim. Acta, 102, 175-190 (2013). https://doi.org/10.1016/j.gca.2012.10.032
  31. D.A. Neitzel, A.L. Bunn, S.D. Cannon, J.P. Duncan, R.A. Fowler, B.G. Fritz, D.W. Harvey, P.L. Hendrickson, D.J. Hoitink, D.G. Horton, G.V. Last, T.M. Poston, E.L. Prendergast-Kennedy, S.P. Reidel, A.C. Rohay, M.R. Sackschewsky, M.J. Scott, and P.D. Thorne. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17, Pacific Northwest National Laboratory Repport, PNNL6415 (2005).
  32. R.E. Gephart, "A Short History of Waste Management at the Hanford Site", Phys. Chem. Earth, 35(6-8), 298- 306 (2010). https://doi.org/10.1016/j.pce.2010.03.032
  33. J.E. Szecsody, M.L. Rockhold, M. Oostrom, R.C. Moore, C.A. Burns, M.D. Williams, L. Zhong, J.S. Fruchter, J.P. McKinley, V.R. Vermeul, M.A. Covert, T.W. Wietsma, A.T. Breshears, and B.J. Garcia. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a CaCitrate-Phosphate Solution, Pacific Northwest National Laboratory Repport, PNNL-18303 (2009).
  34. J.F. Rakovan and J. M. Hughes, "Strontium in the Apatite Structure: Strontian Fluorapatite and Belovite- (Ce)", Can. Mineral., 38(4), 839-845 (2000). https://doi.org/10.2113/gscanmin.38.4.839
  35. V.R. Vermeul, J.E. Szecsody, B.G. Fritz, M.D. Williams, R.C. Moore, and J.S. Fruchter, "An Injectable Apatite Permeable Reactive Barrier for In Situ 90Sr Immobilization", Groundw. Monit. Remediat., 34(2), 28-41 (2014).
  36. J.F. Rakovan and J.D. Pasteris, "A Technological Gem: Materials, Medical, and Environmental Mineralogy of Apatite", Elements, 11(3), 195-200 (2015). https://doi.org/10.2113/gselements.11.3.195
  37. D.M. Wellman, J.P. Icenhower, and A.T. Owen, "Comparative Analysis of Soluble Phosphate Amendments for the Remediation of Heavy Metal Contaminants: Effect on Sediment Hydraulic Conductivity", Environ. Chem., 3(3), 219224 (2006).
  38. R.C. Moore, C. Sanchez, K. Holt, P. Zhang, H. Xu, and G.R. Choppin, "Formation of Hydroxyapatite in Soils Using Calcium Citrate and Sodium Phosphate for Control of Strontium Migration", Radiochim. Acta, 92(9-11), 719-723 (2004). https://doi.org/10.1524/ract.92.9.719.55000
  39. J.E. Szecsody, C.A. Burns, R.C. Moore, J.S. Fruchter, V.R. Vermeul, M.D. Williams, D.C. Girvin, J.P. Mckinley, M.J. Truex, and J.L. Phillips. Hanford 100-N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100-N Sediments, Pacific Northwest National Laboratory Technical Report, PNNL-16891 (2007).
  40. S.H. Wallace, S. Shaw, K. Morris, J.S. Small, A.J. Fuller, and I.T. Burke, "Effect of Groundwater pH and Ionic Strength on Strontium Sorption in Aquifer Sediments: Implications for 90Sr Mobility at Contaminated Nuclear Sites", Appl. Geochemistry, 27(8), 1482-1491 (2012). https://doi.org/10.1016/j.apgeochem.2012.04.007
  41. V.R. Vermeul, B.G. Fritz, J.S. Fruchter, J.E. Szecsody, and M.D. Williams. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate- Phosphate Solution Injection for In Situ Strontium-90 Immobilization, Pacific Northwest National Laboratory Technical Report, PNNL-19572 (2010).
  42. Sellafield Ltd. July 31 2017. "Corporate Strategy." GOV UK. Accessed Apr. 4 2022. Available from: https://www.gov.uk/government/publications/sellafield-ltd-corporate-strategy.
  43. Sellafield Ltd. April 1 2015. "Groundwater Monitoring at Sellafield: Annual Data Review 2016." GOV UK. Accessed Apr. 4 2022. Available from: https://www.gov.uk/government/publications/groundwater-monitoring-at-sellafield-2014-data-review.
  44. Sellafield Ltd. June 25 2021. "Leak Prevention or Minimisation." Game Changers-Challenges. Accessed Apr. 4 2022. Available from: https://www.gamech-angers.technology/challenge/Leak_prevention_or_minimisation.
  45. L. Newsome, K. Morris, D. Trivedi, N. Atherton, and J.R. Lloyd, "Microbial Reduction of Uranium(VI) in Sediments of Different Lithologies Collected From Sellafield", Appl. Geochemistry, 51, 55-64 (2014). https://doi.org/10.1016/j.apgeochem.2014.09.008
  46. L. Newsome, K. Morris, S. Shaw, D. Trivedi, and J.R. Lloyd, "The Stability of Microbially Reduced U(IV); Impact of Residual Electron Donor and Sediment Ageing", Chem. Geol., 409, 125-135 (2015). https://doi.org/10.1016/j.chemgeo.2015.05.016
  47. T.J. Dichristina, "New Insights Into the Molecular Mechanism of Microbial Metal Respiration", Geochim. Cosmochim. Acta Suppl., 69(10), A670 (2005).
  48. L. Newsome, K. Morris, D. Trivedi, A. Bewsher, and J.R. Lloyd, "Biostimulation by Glycerol Phosphate to Precipitate Recalcitrant Uranium(IV) Phosphate", Environ. Sci. Technol., 49(18), 11070-11078 (2015). https://doi.org/10.1021/acs.est.5b02042
  49. L. Newsome, A. Cleary, K. Morris, and J.R. Lloyd, "Long-Term Immobilization of Technetium via Bioremediation With Slow-Release Substrates", Environ. Sci. Technol., 51(3), 1595-1604 (2017). https://doi.org/10.1021/acs.est.6b04876
  50. R.D. Shannon and C.T. Prewitt, "Effective Ionic Radii in Oxides and Fluorides", Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater., B25, 925-946 (1969).
  51. Y. Fujita, G.D. Redden, J.C. Ingram, M.M. Cortez, F.G. Ferris, and R.W. Smith, "Strontium Incorporation Into Calcite Generated by Bacterial Ureolysis", Geochim. Cosmochim. Acta, 68(15), 3261-3270 (2004). https://doi.org/10.1016/j.gca.2003.12.018
  52. C.L. Thorpe, C. Boothman, J.R. Lloyd, G.T.W. Law, N.D. Bryan, N. Atherton, F.R. Livens, and K. Morris, "The Interactions of Strontium and Technetium With Fe(II) Bearing Biominerals: Implications for Bioremediation of Radioactively Contaminated Land", Appl. Geochemistry, 40, 135-143 (2014). https://doi.org/10.1016/j.apgeochem.2013.11.005
  53. C.L. Thorpe, G.T.W. Law, C. Boothman, J.R. Lloyd, I.T. Burke, and K. Morris, "The Synergistic Effects of High Nitrate Concentrations on Sediment Bioreduction", Geomicrobiol. J., 29(5), 484-493 (2012). https://doi.org/10.1080/01490451.2011.581332
  54. C.L. Thorpe, K. Morris, J.R. Lloyd, M.A. Denecke, K.A. Law, K. Dardenne, C. Boothman, P. Bots, and G.T.W. Law, "Neptunium and Manganese Biocycling in Nuclear Legacy Sediment Systems", Appl. Geochemistry, 63, 303-309 (2015). https://doi.org/10.1016/j.apgeochem.2015.09.008
  55. C.L. Thorpe, G.T.W. Law, J.R. Lloyd, H.A. Williams, N. Atherton, and K. Morris, "Quantifying Technetium and Strontium Bioremediation Potential in Flowing Sediment Columns", Environ. Sci. Technol., 51(21), 12104-12113 (2017). https://doi.org/10.1021/acs.est.7b02652
  56. C.L. Thorpe, J.R. Lloyd, G.T.W. Law, H.A. Williams, N. Atherton, J.H. Cruickshank, and K. Morris, "Retention of 99mTc at Ultra-trace Levels in Flowing Column Experiments-Insights Into Bioreduction and Biomineralization for Remediation at Nuclear Facilities", Geomicrobiol. J., 33(3-4), 199-205 (2016). https://doi.org/10.1080/01490451.2015.1067656
  57. J.B. Duncan, "Reduction and Stabilization (Immobilization) of Pertechnetate to an Immobile Reduced Technetium Species Using Tin (II) Apatite", Sep. Sci. Technol. J., RPP-53855 (2012).
  58. C.I. Pearce, R.C. Moore, J.W. Morad, R.M. Asmussen, S. Chatterjee, A.R. Lawter, T.G. Levitskaia, J.J. Neeway, N.P. Qafoku, M.J. Rigali, S.A. Saslow, J.E. Szecsody, P.K. Thallapally, G. Wang, and V.L. Freedman, "Technetium Immobilization by Materials Through Sorption and Redox-Driven Processes: A Literature Review", Sci. Total Environ., 716, 132849 (2020). https://doi.org/10.1016/j.scitotenv.2019.06.195