DOI QR코드

DOI QR Code

알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting

  • 권민솔 (충북대학교 도시.에너지.환경 융합학부) ;
  • 고재성 (충북대학교 신소재공학과) ;
  • 이예솔 (충북대학교 신소재공학과) ;
  • 이성민 (충북대학교 신소재공학과) ;
  • 유지수 (충북대학교 신소재공학과) ;
  • 이효원 (충북대학교 신소재공학과) ;
  • 송성호 (공주대학교 신소재공학부) ;
  • 이동주 (충북대학교 도시.에너지.환경 융합학부)
  • Kwon, Minsol (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Go, Jaeseong (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Lee, Yesol (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Lee, Sungmin (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Yu, Jisu (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Lee, Hyowon (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Song, Sung Ho (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Dongju (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
  • 투고 : 2022.10.12
  • 심사 : 2022.10.28
  • 발행 : 2022.10.28

초록

Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2021)지원을 받아 작성되었음.

참고문헌

  1. H. Ishaq and I. Dincer: Renewable Sustainable Energy Rev., 135 (2021) 110192.
  2. H. Lund: Energy, 32 (2007) 912. https://doi.org/10.1016/j.energy.2006.10.017
  3. O. Ellabban, H. Abu-Rub and F. Blaabjerg: Renewable Sustainable Energy Rev., 39 (2014) 748. https://doi.org/10.1016/j.rser.2014.07.113
  4. V. Sebestyen: Renewable Sustainable Energy Rev., 151 (2021) 111626.
  5. I. Dincer and C. Acar: Int. J. Hydrogen Energy, 42 (2017) 14843. https://doi.org/10.1016/j.ijhydene.2017.04.107
  6. P. K. Rohith, J. Priolkar and G. R. Kunkolienkar In Hydrogen: An innovative and alternative energy for the future, 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), 29 (2016) 1.
  7. C. Acar and I. Dincer: Int. J. Hydrogen Energy, (2022).
  8. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few: Int. J. Hydrogen Energy, 42 (2017) 30470. https://doi.org/10.1016/j.ijhydene.2017.10.045
  9. Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao and S.-H. Yu: Adv. Mater., 33 (2021) 2007100. https://doi.org/10.1002/adma.202007100
  10. C. Hu, L. Zhang and J. Gong: Energy Environ. Sci., 12 (2019) 2620.
  11. M.-I. Jamesh and M. Harb: J. Energy Chem., 56 (2021) 299. https://doi.org/10.1016/j.jechem.2020.08.001
  12. Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen, Y. Hu, H. Jiang and C. Li: Energy Environ. Sci., 14 (2021) 5228.
  13. D. A. Corrigan and R. M. Bendert: J. Electrochem. Soc., 136 (1989) 723. https://doi.org/10.1149/1.2096717
  14. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-G. Lee, T. Yoon and K. S. Kim: ACS Catalysis, 7 (2017) 7196.
  15. S. Trasatti: Electrochimi. Acta, 29 (1984) 1503.
  16. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Gratzel: Science, 345 (2014) 1593. https://doi.org/10.1126/science.1258307
  17. J. Kubisztal and A. Budniok: Int. J. Hydrogen Energy, 33 (2008) 4488.
  18. H. Dai, A. Javey, E. Pop, D. Mann, W. Kim and Y. Lu: Nano, 01 (2006) 1. https://doi.org/10.1142/S1793292006000070
  19. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov and T. F. Jaramillo: Science, 355 (2017) eaad4998. https://doi.org/10.1126/science.aad4998
  20. S. Khalid, C. Cao, L. Wang and Y. Zhu: Sci. Rep., 6 (2016) 22699. https://doi.org/10.1038/srep22699
  21. Y. Gong, Z. Yang, Y. Lin, J. Wang, H. Pan and Z. Xu: J. Mater. Chem. A, 6 (2018) 16950.
  22. H. Park, B. H. Park, J. Choi, S. Kim, T. Kim, Y.-S. Youn, N. Son, J. H. Kim and M. Kang: Nanomaterials, 10 (2020) 1727. https://doi.org/10.3390/nano10091727
  23. M. Qin, D. Lan, G. Wu, X. Qiao and H. Wu: Appl. Surf. Sci., 504 (2020) 144480. https://doi.org/10.1016/j.apsusc.2019.144480
  24. A. Y. Faid and H. Ismail: ChemistrySelect, 4 (2019) 7896. https://doi.org/10.1002/slct.201901580
  25. J.-L. Ortiz-Quinonez, U. Pal and M. S. Villanueva: ACS Omega, 3 (2018) 14986. https://doi.org/10.1021/acsomega.8b02229
  26. L. Zhang, Y. Li, J. Peng and K. Peng: Electrochim. Acta, 318 (2019) 762.
  27. J. Liu, J. Zhang, D. Wang, D. Li, J. Ke, S. Wang, S. Liu, H. Xiao and R. Wang: ACS Sustainable Chemistry & Engineering, 7 (2019) 12428.
  28. Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng: Adv. Energy Mater., 5 (2015) 1402031. https://doi.org/10.1002/aenm.201402031
  29. T. Zhang, K. Yang, C. Wang, S. Li, Q. Zhang, X. Chang, J. Li, S. Li, S. Jia, J. Wang and L. Fu: Adv. Energy Mater., 8 (2018) 1801690.
  30. Q. Ouyang, Z. Lei, Q. Li, M. Li and C. Yang: J. Mater. Chem. A, 9 (2021) 14466. https://doi.org/10.1039/D1TA00710F
  31. F.-T. Tsai, Y.-T. Deng, C.-W. Pao, J.-L. Chen, J.-F. Lee, K.-T. Lai and W.-F. Liaw: J. Mater. Chem. A,, 8 (2020) 9939. https://doi.org/10.1039/D0TA01877E
  32. Y. Zhai, X. Ren, J. Yan and S. Liu: Small Structures, 2 (2021) 2000096.