DOI QR코드

DOI QR Code

A review on Separation Technologies for Lithium Recovery from Waste Solutions in Recycling Process of Waste Battery

폐배터리 재활용 공정 폐액 중 리튬 회수를 위한 분리 기술 고찰

  • Song, Daesung (School of Chemical Engineering, Chonnam National University) ;
  • Kim, Eunkyu (School of Chemical Engineering, Chonnam National University) ;
  • Vu, Thang-Toan (School of Chemical Engineering, Chonnam National University)
  • 송대성 (전남대학교 화학공학부) ;
  • 김은규 (전남대학교 화학공학부) ;
  • Received : 2022.01.26
  • Accepted : 2022.02.23
  • Published : 2022.11.01

Abstract

In this study, candidate technologies for lithium recovery from the process waste liquid generated in the waste battery recycling process were reviewed, and technologies applicable to the process from the commercialization point of view were reviewed from a qualitative point of view. The evaporation method is difficult to apply because it requires a large-scale land and shows a low recovery rate due to the loss of Li during the concentration process. In the case of precipitation, a commercially available technology shows a high recovery rate due to the high Li/Na selectivity of phosphoric acid, but there are disadvantages in that the process is complicated due to the use of expensive phosphoric acid, requiring a recovery step, and continuous operation is impossible because solids are handled in the Li concentration process. In the case of solvent extraction, if we find an inexpensive extractant with high Li/Na selectivity, continuous operation is possible with the method used in extraction of other metals in the previous step, and when Li is concentrated, continuous operation is possible because it is in a liquid state. If it shows a similar recovery rate compared to precipitation technology, commercialization will be the most likely.

본 연구에서는 폐배터리 재활용 공정에서 발생하는 공정폐액 중 리튬 회수를 위한 후보 기술들을 검토하고 상용화 관점에서 해당 공정에 적용 가능한 기술들을 정성적 측면에서 검토하였다. 현재 기술 수준에서 상용화 규모로 적용 가능한 증발법, 침전 및 용매추출 기술이 있다. 증발법의 경우 대규모의 땅을 필요로 하고 농축과정에서의 Li 손실로 낮은 회수율 보여 적용하기 어렵다. 침전의 경우, 상용화되어 있는 기술로 인산의 높은 Li/Na 선택도로 높은 회수율을 보이지만 비싼 인산 사용으로 회수 단계 필요로 공정이 복잡하고 Li 농축과정에서 고체를 다루고 있어 연속운전이 불가능하다는 단점이 있다. 용매추출의 경우, Li/Na 선택도가 높은 저렴한 추출제를 찾는다면 전 단계의 다른 금속 추출 시 사용되고 있는 방법으로 연속운전이 가능하고 Li 농축 시 액체 상태이기 때문에 연속운전이 가능하다는 장점이 있다. 침전기술과 비교하여 유사한 회수율을 보인다면 상용화가 가능성이 가장 높을 것이다.

Keywords

Acknowledgement

본 연구는 한국 환경부 주관 화학물질 특성화대학원의 지원을 통해 수행됨.

References

  1. <2020> Global LIB Line Expansion Outlook (~2030).
  2. Zhang, Y., Hu, Y., Wang, L. and Sun, W., "Systematic Review of Lithium Extraction from Salt-lake Brines Via Precipitation Approaches," Miner. Eng., 139, 105868(2019).
  3. Zhao, X., Yang, H., Wang, Y., Yang, L. and Zhu, L., "Lithium Extraction from Brine by an Asymmetric Hybrid Capacitor Composed of Heterostructured Lithium-rich Cathode and Nano-bismuth Anode," Sep. Purif. Technol., 119078(2021).
  4. Wesselborg, T., Virolainen, S. and Sainio, T., "Recovery of Lithium from Leach Solutions of Battery Waste Using Direct Solvent Extraction with Tbp and Fecl3", Hydrometallurgy 202, 105593 (2021).
  5. Gu, G. and Gao, T., "Sustainable Production of Lithium Salts Extraction from Ores in China: Cleaner Production Assessment," Resour. Policy, 74, 102261(2021).
  6. Choubey, P. K., Chung, K.-S., Kim, M.-S., Lee, J.-C. and Srivastava, R. R., "Advance Review on the Exploitation of the Prominent Energy-storage Element Lithium. Part ii: From Sea Water and Spent Lithium Ion Batteries (libs)," Miner. Eng., 110, 104(2017).
  7. Liu, C., Lin, J., Cao, H., Zhang, Y. and Sun, Z., "Recycling of Spent Lithium-ion Batteries in View of Lithium Recovery: A Critical Review," J. Clean. Prod., 228, 801(2019).
  8. Yang, S., Zhang, F., Ding, H., He, P. and Zhou, H., "Lithium Metal Extraction from Seawater," Joule, 2, 1648(2018).
  9. Meshram, P., Pandey, B. D. and Mankhand, T. R., "Extraction of Lithium from Primary and Secondary Sources by Pre-treatment, Leaching and Separation: A Comprehensive Review," Hydrometallurgy, 150, 192(2014).
  10. Zhang, X., Li, L., Fan, E., Xue, Q., Bian, Y., Wu, F. and Chen, R., "Toward Sustainable and Systematic Recycling of Spent Rechargeable Batteries," Chem. Soc. Rev., 47, 7239(2018).
  11. Ballinger, B., Stringer, M., Schmeda-Lopez, D. R., Kefford, B., Parkinson, B., Greig, C. and Smart, S., "The Vulnerability of Electric Vehicle Deployment to Critical Mineral Supply," Appl. Energy, 255, 113844(2019).
  12. Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M. and Inoue, K., "Hydrometallurgical Process for Recovery of Metal Values from Spent Lithium-ion Secondary Batteries," Hydrometallurgy, 47, 259(1998).
  13. Xu, L., Chen, C. and Fu, M.-L., "Separation of Cobalt and Lithium from Spent Lithium-ion Battery Leach Liquors by Ionic Liquid Extraction Using Cyphos il-101," Hydrometallurgy, 197, 105439 (2020).
  14. Bae, H. and Kim, Y., "Technologies of Lithium Recycling from Waste Lithium-ion Batteries: A Review," Adv. Mater., 2, 3234(2021).
  15. Zhang, Y., Hu, Y., Sun, N., Khoso, S. A., Wang, L. and Sun, W., "A Novel Precipitant for Separating Lithium from Magnesium in High Mg/li Ratio Brine," Hydrometallurgy, 187, 125(2019).
  16. Li, B., Wu, J. and Lu, J., "Life Cycle Assessment Considering Water-energy Nexus for Lithium Nanofiltration Extraction Technique," J. Clean. Prod., 261, 121152(2020).
  17. Sun, S., Yu, X., Li, M., Duo, J., Guo, Y. and Deng, T., "Green Recovery of Lithium from Geothermal Water Based on a Novel Lithium Iron Phosphate Electrochemical Technique," J. Clean. Prod., 247, 119178(2020).
  18. Al-Ghouti, M. A. and Al-Absi, R. S., "Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater," Sci. Rep., 10, 1(2020).
  19. Park, J., Sato, H., Nishihama, S. and Yoshizuka, K., "Lithium Recovery from Geothermal Water by Combined Adsorption Methods," Solvent Extr. Ion Exch., 30, 398(2012).
  20. Li, X., Mo, Y., Qing, W., Shao, S., Tang, C. Y. and Li, J., "Membrane-based Technologies for Lithium Recovery from Water Lithium Resources: A Review," J. Membr. Sci., 591, 117317(2019).
  21. Gao, D., Guo, Y., Yu, X., Wang, S. and Deng, T., "Extracting Lithium from the High Concentration Ratio of Magnesium and Lithium Brine Using Imidazolium-based Ionic Liquids with Varying Alkyl Chain Lengths," J. Chem. Eng. Jpn., 49, 104(2018).
  22. Liu, X., Zhong, M., Chen, X. and Zhao, Z., "Separating Lithium and Magnesium in Brine by Aluminum-based Materials," Hydrometallurgy, 176, 73(2018).
  23. Pranolo, Y., Zhu, Z. and Cheng, C. Y., "Separation of Lithium from Sodium in Chloride Solutions Using SSX Systems with LIX 54 and Cyanex 923," Hydrometallurgy, 154, 33-39(2015). https://doi.org/10.1016/j.hydromet.2015.01.009
  24. Zhang, L., Li, L., Shi, D., Li, J., Peng, X. and Nie, F., "Selective Extraction of Lithium from Alkaline Brine Using HBTA-TOPO Synergistic Extraction System," Sep. Purif. Technol., 188, 167-173(2017). https://doi.org/10.1016/j.seppur.2017.07.028