DOI QR코드

DOI QR Code

이변량 강우 빈도분석과 강우-유출 모형에 기반한 설계 홍수량 산정 방안

Estimating design floods based on bivariate rainfall frequency analysis and rainfall-runoff model

  • 김민지 (한양대학교 대학원 스마트시티공학과) ;
  • 박경운 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김석우 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Kim, Min Ji (Department of Smart City Engineering, Hanyang University) ;
  • Park, Kyung Woon (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Kim, Seok-Woo (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2022.06.06
  • 심사 : 2022.09.15
  • 발행 : 2022.10.31

초록

홍수량 자료의 부족으로 인해 수자원 실무에서는 강우빈도분석과 강우-유출 모형을 이용하여 설계 홍수량을 산정한다. 하지만 임의 지속기간에 대한 강우빈도분석은 호우사상의 지속기간과 크기에 대한 지역적 특성을 반영하지 못한다. 본 연구에서는 호우사상의 특성을 반영하여 유역의 설계 홍수량을 산정하기 위하여 이변량 강우 빈도분석에 기반한 설계 홍수량 산정 방안을 제시하였다. 평창강 유역과 남한강 상류 유역을 대상으로 각 강우 지점별 독립 호우사상을 추출하여 이변량 강우 빈도분석을 수행하였으며, 중앙값을 이용하여 재현기간별 설계 호우사상을 결정하고, 이를 HEC-1 모형에 적용하여 설계 홍수량을 산정하였다. 또한 홍수량 자료를 빈도분석한 결과(DF_FFA)를 기준으로, 단변량 강우 빈도분석 후 강우-유출모형으로 산정한 기존의 홍수량(DF_URFA)과 본 연구에서 제안한 방법으로 산정한 홍수량(DF_BRFA)을 비교분석하였다. 평창강 유역의 경우, 재현기간 100년인 경우를 제외하고 강우량을 기준으로 산정한 연 최대 호우사상에 대한 BRFA 방법으로 산정한 설계 홍수량이 평균오차 11.6%로 FFA로 산정한 설계 홍수량과 가장 근접하게 나타났다. 남한강 유역의 경우, 지점별 강우량을 기준으로 산정한 연 최대 호우사상에 대한 BRFA 방법으로 산정한 설계 홍수량의 평균오차가 약 10%로 FFA로 산정한 설계 홍수량과 가장 비슷하게 산정되었다. 재현기간이 커질수록 URFA에 의한 설계 홍수량이 FFA에 의한 설계 홍수량보다 크게 산정되었으며, URFA의 설계 홍수량보다 BRFA의 설계 홍수량이 FFA에 의한 설계 홍수량과의 차이가 더 작은 것으로 나타났다. 본 연구에서 제안한 설계 홍수량 산정 방안을 활용한다면, 미계측 유역에서도 실제 DF_FFA 값과 근접한 설계 홍수량을 산정할 수 있을 것으로 기대되며 수공구조물 설계와 수자원 계획 등을 경제적이고 합리적으로 진행할 수 있을 것으로 판단된다.

Due to the lack of flood data, the water engineering practice calculates the design flood using rainfall frequency analysis and rainfall-runoff model. However, the rainfall frequency analysis for arbitrary duration does not reflect the regional characteristics of the duration and amount of storm event. This study proposed a practical method to calculate the design flood in a watershed considering the characteristics of storm event, based on the bivariate rainfall frequency analysis. After extracting independent storm events for the Pyeongchang River basin and the upper Namhangang River basin, we performed the bivariate rainfall frequency analysis to determine the design storm events of various return periods, and calculated the design floods using the HEC-1 model. We compared the design floods based on the bivariate rainfall frequency analysis (DF_BRFA) with those estimated by the flood frequency analysis (DF_FFA), and those estimated by the HEC-1 with the univariate rainfall frequency analysis (DF_URFA). In the case of the Pyeongchang River basin, except for the 100-year flood, the average error of the DF_BRFA was 11.6%, which was the closest to the DF_FFA. In the case of the Namhangang River basin, the average error of the DF_BRFA was about 10%, which was the most similar to the DF_FFA. As the return period increased, the DF_URFA was calculated to be much larger than the DF_FFA, whereas the BRFA produced smaller average error in the design flood than the URFA. When the proposed method is used to calculate design flood in an ungauged watershed, it is expected that the estimated design flood might be close to the actual DF_FFA. Thus, the design of the hydrological structures and water resource plans can be carried out economically and reasonably.

키워드

참고문헌

  1. Choi, J.I., Ji, J.W., and Yi, J.E. (2015). "A study on rainfall-runoff frequency analysis for estimating design flood." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 605-612. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.8.605
  2. Hwang, B.G., Cho, Y.S., and Yang, S.B. (2019). "Analysis of rainfall-ruunoff characteristics in Gokgyochun basin using a runoff model." Journal of Korea Academia-Industrial Cooperation Society, Vol. 20, No. 2, pp. 404-411. (in Korean)
  3. Jun, C.H., and Yoo, C.S. (2013). "Analysis on the characteristics about representative temporal-distribution of rainfall in the annual maximum independent rainfall events at Seoul using beta distribution." Journal of Korea Water Resources Association, Vol. 46, No. 4, pp. 361-372. (in Korean) https://doi.org/10.3741/JKWRA.2013.46.4.361
  4. Jun, C.H., Qin, X. Gan, T.Y., Tung, Y.K., and De Michele, C. (2017). "Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design." Journal of Hydrology, Vol. 553, pp. 374-383. https://doi.org/10.1016/j.jhydrol.2017.08.004
  5. Karahacane, H., Meddi, M., Chebana, F., and Saaeed, H.A. (2020). "Complete multivariate flood frequency analysis, applied to northern Algeria." Journal of Flood Risk Management, Vol. 13, No. 4, e12619.
  6. Kim, J.E., Yu, J.S., Lee, J.H., and Kim, T.W. (2018). "Drought risk analysis in Seoul using Cheungugi and climate change scenario based rainfall data." Journal of the Korean Society of Civil Engineers, Vol. 38, No. 3, pp. 387-393. (in Korean) https://doi.org/10.12652/KSCE.2018.38.3.0387
  7. Kim, N.W., Lee, J.Y., Park, D.H., and Kim, T.W. (2019). "Evaluation of future flood risk according to RCP scenarios using a regional flood frequency analysis for ungauged watersheds." Water, Vol. 11, No. 5, 992. https://doi.org/10.3390/w11050992
  8. Lee, J.W., and Chung, G.H. (2017). "Estimation of inter event time definition using in urban areas." Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 4, pp. 287-294. (in Korean)
  9. Ministry of Environment (ME). (2020). National river basin flood calculation/estimation of flood in the National River basin. pp. 1001-1-1002-120. (in Korean)
  10. Ministry of Land, Transport and Maritime Affairs (MLTM). (2008). Comprehensive flood management plan in Han River basin. pp. 1001-1-1002-120. (in Korean)
  11. Park, J.B., Kal, B.S., and Heo, J.R. (2015). "The study to estimate the fitness of bivariate rainfall frequency analysis considering the interdependence between rainfall and wind speed." Journal of the Korean Society of Hazard Mitigation, Vol. 15, No. 2, pp. 103-110. (in Korean) https://doi.org/10.9798/KOSHAM.2015.15.2.103
  12. Park, J.Y., Kim, J.E., Lee, J.H., and Kim, T.W. (2019). "Assessment of hydrologic risk of extreme drought according to RCP climate change scenarios using bivariate frequency analysis." Journal of the Korean Society of Civil Engineers, Vol. 39, No. 5, pp. 561-568. (in Korean) https://doi.org/10.12652/KSCE.2019.39.5.0561
  13. Park, M.K., and Yoo, C.S. (2011). "Probabilistic analysis of independent storm events: 1. construction of annual maximum storm event series." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 2, pp. 127-136. (in Korean) https://doi.org/10.9798/KOSHAM.2011.11.2.127
  14. Shin, J.U., Jeong, C.S., Ahn, H.J., and Heo, J.H. (2018). "Bivariate regional frequency analysis of extreme rainfalls in Korea." Journal of Korea Water Resources Association, Vol. 51, No. 9, pp. 747-759. (in Korean) https://doi.org/10.3741/JKWRA.2018.51.9.747
  15. Volpi, E., and Fiori, A. (2012). "Design event selection in bivariate hydrological frequency analysis." Hydrological Sciences Journal, Vol. 57, No. 8, pp. 1506-1515. https://doi.org/10.1080/02626667.2012.726357
  16. Yin, J., Guo, S., Liu, Z., Yang, G., Zhong, Y., and Liu, D. (2018). "Uncertainty analysis of bivariate design flood estimation and its impacts on reservoir routing." Water Resources Management, Vol. 32, No. 5, pp. 1795-1809. https://doi.org/10.1007/s11269-018-1904-x
  17. Yoo, C.S., and Cho, E.S. (2019). "Effect of multicollinearity on the bivariate frequency analysis of annual maximum rainfall events." Water, Vol. 11, No. 5, pp. 905. https://doi.org/10.3390/w11050905
  18. Yoo. C.S., Park, C.S., and Jun, C.H. (2016). "Evaluation of the concept of critical rainfall duration by bivariate frequency analysis of annual maximum independent rainfall event series in Seoul." Journal of Hydrologic Engineering, Vol. 21, No. 1, 05015016. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001259
  19. Yu, J.S., Shin, J.Y., Kwon, M.S., and Kim, T.W. (2017). "Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dams." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 1, pp. 231-238. (in Korean) https://doi.org/10.12652/KSCE.2017.37.1.0231