DOI QR코드

DOI QR Code

물순환 회복을 위한 우선관리유역 선정 방안에 대한 연구

A study on the selection of priority management watershed for the restoration of water cycle

  • 김재문 (부산대학교 녹색국토물관리연구소) ;
  • 백종석 (한국수자원조사기술원 첨단인프라실) ;
  • 박재록 (부산대학교 녹색국토물관리연구소) ;
  • 박병우 (한국수자원공사 인재개발원) ;
  • 신현석 (부산대학교 건설융합부 토목공학과)
  • Kim, Jaemoon (Green Land and Water Management Research Institute, Pusan National University) ;
  • Baek, Jongseok (Advanced Infrastructure Department, Korea Institute of Hydrological Survey) ;
  • Park, Jaerock (Green Land and Water Management Research Institute, Pusan National University) ;
  • Park, Byungwoo (K-water Education Dispatch) ;
  • Shin, Hyunsuk (School of Urban, Architecture and Civil Engineering, Pusan National University)
  • 투고 : 2022.04.27
  • 심사 : 2022.09.15
  • 발행 : 2022.10.31

초록

기후변화로 인한 이상기후 현상 증가와 도시화로 인한 불투수면의 증가로 인해 유역 물순환 관리 패러다임이 변화하고 있는 실정이다. 국내외에서는 물순환 왜곡현상을 억제해 줄 수 있는 저영향개발기술을 기반으로 연구가 지속적으로 진행중이다. 본 연구에서는 저영향개발 적용을 하기에 앞서 물순환 왜곡현상을 반영할 수 있는 요소 P, S, R값을 산정하여, 낙동강 유역을 대상으로 148 소유역별 PSR 지수를 산정하였다. PSR지수는 토지피복도 1975년을 기준으로 2019년 현재까지의 불투수면 변화율을 나타내는 압력지수 P, 기준에서 현재까지 각 소유역별 물순환 변화율을 나타내는 현상지수 S, 현시점에서 저영향개발 적용가능 면적 대책지수 R을 산정하여, 표준거리 d값 산정을 통해 PSR지수를 산정한다. PSR 지수값이 낮을수록 우선 관리 유역에 해당하며, 물순환 회복 우선 관리 유역으로는 1(서낙동강A), 2(낙동강하구언), 87(신천하류), 90(금호강하류), 91(진천천), 147(서낙동강B) 등 순으로 산정되었다. 대권역내 소유역별 물순환 우선관리 순서에 따라 효율적으로 저영향개발요소를 적용하면 물순환 왜곡현상 회복에 기여할 것으로 사료된다.

The paradigm of water cycle management in the watershed is changing due to the increase in abnormal climate phenomena caused by climate change and the increase in impervious area due to urbanization. Research is continuously underway based on Low Impact Development technology that can suppress water cycle distortion. In this study, factors that can reflect water cycle distortion were selected before applying LID, and the PSR index for each 148 watershed was calculated for the the Nakdonggang River basin. As of 1975, the PSR index is calculated by calculating the pressure index P, which represents the rate of change in impervious surface area to 2019, the phenomenon index S, which represents the rate of change in water cycle for each subwatershed, and the Low Impact Development area countermeasure index R. The lower PSR index value, the higher the priority management watershed, and the water cycle recovery priority management watershed was calculated in the order of 1, 2, 87, 90, 91, and 147. It is expected that the efficient application of low-impact development factors in accordance with the order of priority management of water cycle by subwatershed in the large area will contribute to the recovery of water cycle distortion.

키워드

과제정보

본 연구는 환경부 「기후변화특성화대학원사업」의 지원으로 수행되었습니다.

참고문헌

  1. Choi, H.I., Park, S.Y., Song, J.H., and Park, M.J. (2013). "Identification of flood risk areas using a multi-criteria decision making method." Journal of Korean Society of Hazard Mitigation, Vol. 13, No. 2, pp. 237-243. https://doi.org/10.9798/KOSHAM.2013.13.2.237
  2. Choi, H.J. (2005). "An application of PSR (Pressure-State-Response) framework to tidal flats classification management." Journal of Korean Wetlands Society, Vol. 7, No. 2, pp. 133-144.
  3. Choi, S.J., Lee, D.R., Moon, J.W., Kang, S.K., and Yang, S.H. (2011). "Development of the integrated water resources index based on characteristic of indicators." Journal of Korea Water Resources Association, p. 456.
  4. Donigian, A.S., Jr. (2000). Lecture 19: Calibration and verification issues, Slide L19-22. HSPF training workshop handbook and CD. Presented and prepared for the U.S. EPA Office of Water and Office of Science and Technology, Washington, D.C., U.S.
  5. Engelmann, C.J.K., Ward, A.D., Christy, A.D., and Bair, E.S. (2002). "Application of the BASINS database and NPSM model on a small Ohio watershed." Journal of the American Water Resources Association, Vol. 38, No. 1, pp. 289-300. https://doi.org/10.1111/j.1752-1688.2002.tb01552.x
  6. Intergovernmental Panel on Climate Change (IPCC) (2007). "Climate change, the physical science basis." Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change Edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, B., Tignor, M., Miller, H.L., Cambridge University Press, Cambridge, UK and New York, NY, U.S., p. 996.
  7. Jang, J.H., Yoon, C.G., Jung, K.W., and Kwon, S.Y. (2009). "Decision of critical area due to NPS pollutant loadings from Kyongan stream watershed using BASIN-SWAT." Journal of the Korean Society of Agricultural Engineers, Vol. 51, No. 5, pp. 69-78. https://doi.org/10.5389/KSAE.2009.51.5.069
  8. Kim, E.S., Sim, K.B., Jung, G.H., Nam, Y.K., and Choi, H.I. (2014). "Lake environmental risk index using PSR f ramework." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 2, pp. 317-326.
  9. Kim, J.H., and Kwon, T.J. (2014). "Development of public facility design in consideration of heavy rainfall disaster." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 13, p. 80.
  10. Laroche, A.M., Gallichand, J., Lagace, R., and Pesant, A., (1996). "Simulating atrazine transport with HSPF in an agricultural watershed." Journal of Environmental Chemical Engineering, Vol. 122, No. 7, pp. 622-630.
  11. Lee, K.S., Cung, E.S., Shim, M.J., and Kim, Y.O. (2006). "Sustainable water resources planning to prevent streamflow Depletion in an urban watershed: 2. application." Journal of Korea Water Resources Association, Vol. 39, No. 11, pp. 947-960. https://doi.org/10.3741/JKWRA.2006.39.11.947
  12. Lim, K.S., Choi, S.J., Lee, D.R., and Moon, J.W. (2010). "Development of flood risk index using causal relationships of Flood Indicators." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 1B, pp. 61-70.
  13. Ministry of Environment (ME) (2020). Manual for setting and management of non-point pollution reduction facilities. Publication No. 11-1480000-001700-14, pp. 42-174.
  14. Organisation for Economic Co-operation and Development (OECD) (1991). Environmental indicators, a preliminary set. Paris, France.
  15. Park, M.J., Song, Y.S., Joo, J.G., and Park, M.K. (2013). "A study on urban flood vulnerability assessment." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 5, pp. 297-305.
  16. Ribarova, I., Ninov, P., and Cooper, D., (2008). "Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study." Bulgaria, Ecological Modelling, Vol. 211, No. 1-2, pp. 241-246. https://doi.org/10.1016/j.ecolmodel.2007.09.022
  17. Shin, A.H. (2008). A study on the dam simulation and non-point pollution reduction in Chungju Dam basin using BASINS/WinHSPF. Mater Thesis, Konkuk University.
  18. Singh, J., Knapp, H.V., and Demissie, M. (2005). "Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT." Journal of the American Water Resources Association, Vol. 42, No. 2, pp. 343-360. https://doi.org/10.1111/j.1752-1688.2005.tb03740.x