DOI QR코드

DOI QR Code

GLOBAL Hɪ PROPERTIES OF GALAXIES VIA SUPER-PROFILE ANALYSIS

  • Kim, Minsu (Department of Astronomy and Space Science, Sejong University) ;
  • Oh, Se-Heon (Department of Astronomy and Space Science, Sejong University)
  • 투고 : 2022.06.30
  • 심사 : 2022.08.29
  • 발행 : 2022.10.31

초록

We present a new method which constructs an Hɪ super-profile of a galaxy which is based on profile decomposition analysis. The decomposed velocity profiles of an Hɪ data cube with an optimal number of Gaussian components are co-added after being aligned in velocity with respect to their centroid velocities. This is compared to the previous approach where no prior profile decomposition is made for the velocity profiles being stacked. The S/N improved super-profile is useful for deriving the galaxy's global Hɪ properties like velocity dispersion and mass from observations which do not provide sufficient surface brightness sensitivity for the galaxy. As a practical test, we apply our new method to 64 high-resolution Hɪ data cubes of nearby galaxies in the local Universe which are taken from THINGS and LITTLE THINGS. In addition, we also construct two additional Hɪ super-profiles of the sample galaxies using symmetric and all velocity profiles of the cubes whose centroid velocities are determined from Hermite h3 polynomial fitting, respectively. We find that the Hɪ super-profiles constructed using the new method have narrower cores and broader wings in shape than the other two super-profiles. This is mainly due to the effect of either asymmetric velocity profiles' central velocity bias or the removal of asymmetric velocity profiles in the previous methods on the resulting Hɪ super-profiles. We discuss how the shapes (𝜎n/𝜎b, An/Ab, and An/Atot) of the new Hɪ super-profiles which are measured from a double Gaussian fit are correlated with star formation rates of the sample galaxies and are compared with those of the other two super-profiles.

키워드

과제정보

S.-H. Oh acknowledges a support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT: MSIT) (No. NRF-2020R1A2C1008706).

참고문헌

  1. Agertz, O., Lake, G., Teyssier, R., et al. 2009, Large-scale galactic turbulence: can self-gravity drive the observed HI velocity dispersions?, MNRAS, 392, 294 https://doi.org/10.1111/j.1365-2966.2008.14043.x
  2. Ashley, T., Simpson, C. E., Elmegreen, B. G., et al. 2017, The HI Chronicles of LITTLE THINGS BCDs. III. Gas Clouds in and around Mrk 178, VII Zw 403, and NGC 3738, AJ, 153, 132 https://doi.org/10.3847/1538-3881/aa5ca7
  3. Bacchini, C., Fraternali, F., Iorio, G., et al. 2020, Evidence for supernova feedback sustaining gas turbulence in nearby star-forming galaxies, A&A, 641, A70 https://doi.org/10.1051/0004-6361/202038223
  4. Binney, J. 1992, Warps., ARA&A, 30, 51 https://doi.org/10.1146/annurev.aa.30.090192.000411
  5. Boomsma, R., Oosterloo, T. A., Fraternali, F., et al. 2008, HI holes and high-velocity clouds in the spiral galaxy NGC 6946, A&A, 490, 555 https://doi.org/10.1051/0004-6361:200810120
  6. Bosma, A. 1978, The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, PhD thesis, University of Groningen, Netherlands
  7. Bournaud, F., Chapon, D., Teyssier, R., et al. 2011, Hydrodynamics of High-redshift Galaxy Collisions: From Gasrich Disks to Dispersion-dominated Mergers and Compact Spheroids, ApJ, 730, 4 https://doi.org/10.1088/0004-637X/730/1/4
  8. Cigan, P., Young, L., Cormier, D., et al. 2016, Herschel Spectroscopic Observations of Little Things Dwarf Galaxies, AJ, 151, 14 https://doi.org/10.3847/0004-6256/151/1/14
  9. Cignoni, M., Sacchi, E., Aloisi, A., et al. 2018, Star Formation Histories of the LEGUS Dwarf Galaxies. I. Recent History of NGC 1705, NGC 4449, and Holmberg II, ApJ, 856, 62 https://doi.org/10.3847/1538-4357/aab041
  10. Clemens, M. S., Alexander, P., & Green, D. A. 2000, Ram-pressure stripping of the interstellar medium in NGC 4485, MNRAS, 312, 236 https://doi.org/10.1046/j.1365-8711.2000.03069.x
  11. Dale, J. E., Kruijssen, J. M. D., & Longmore, S. N. 2019, The dynamical evolution of molecular clouds near the Galactic Centre - III. Tidally induced star formation in protocluster clouds, MNRAS, 486, 3307 https://doi.org/10.1093/mnras/stz888
  12. Das, M., McGaugh, S. S., Ianjamasimanana, R., et al. 2020, Tracing the Dynamical Mass in Galaxy Disks Using H I Velocity Dispersion and Its Implications for the Dark Matter Distribution in Galaxies, ApJ, 889, 10 https://doi.org/10.3847/1538-4357/ab5fcd
  13. Davies, R., Forster Schreiber, N. M., Cresci, G., et al. 2011, How Well Can We Measure the Intrinsic Velocity Dispersion of Distant Disk Galaxies?, ApJ, 741, 69 https://doi.org/10.1088/0004-637X/741/2/69
  14. de Blok, W. J. G., & Walter, F. 2006, The Stellar Population and Interstellar Medium in NGC 6822, AJ, 131, 343 https://doi.org/10.1086/497829
  15. de Blok, W. J. G., Walter, F., Brinks, E., et al. 2008, High-Resolution Rotation Curves and Galaxy Mass Models from THINGS, AJ, 136, 2648 https://doi.org/10.1088/0004-6256/136/6/2648
  16. Dewdney, P. E., Hall, P. J., Schilizzi, R. T., et al. 2009, The Square Kilometre Array, IEEE Proceedings, 97, 1482 https://doi.org/10.1109/JPROC.2009.2021005
  17. Dove, J. B., & Shull, J. M. 1994, Photoionization of Disk Galaxies: an Explanation of the Sharp Edges in the H i Distribution, ApJ, 423, 196 https://doi.org/10.1086/173799
  18. Faridani, S., Floer, L., Kerp, J., et al. 2014, H I observations of three compact high-velocity clouds around the Milky Way, A&A, 563, A99 https://doi.org/10.1051/0004-6361/201322654
  19. Heiles, C. 1979, H I shells and supershells, ApJ, 229, 533 https://doi.org/10.1086/156986
  20. Hony, S., Gouliermis, D. A., Galliano, F., et al. 2015, Star formation rates from young-star counts and the structure of the ISM across the NGC 346/N66 complex in the SMC, MNRAS, 448, 1847 https://doi.org/10.1093/mnras/stv107
  21. Hunter, D. A., van Woerden, H., & Gallagher, J. S. 1999, Neutral Hydrogen and Star Formation in the Irregular Galaxy NGC 4449, AJ, 118, 2184 https://doi.org/10.1086/301096
  22. Hunter, D. A., Ficut-Vicas, D., Ashley, T., et al., 2012, Little Things, AJ, 144, 134 https://doi.org/10.1088/0004-6256/144/5/134
  23. Hunter, L. C., van Zee, L., McQuinn, K. B. W., et al. 2022, Determining the Timescale over Which Stellar Feedback Drives Turbulence in the Interstellar Medium: A Study of Four Nearby Dwarf Irregular Galaxies, AJ, 163, 132 https://doi.org/10.3847/1538-3881/ac4d2c
  24. Ianjamasimanana, R., de Blok, W. J. G., Walter, F., et al. 2012, The Shapes of the H I Velocity Profiles of the THINGS Galaxies, AJ, 144, 96 https://doi.org/10.1088/0004-6256/144/4/96
  25. Ianjamasimanana, R., de Blok, W. J. G., Walter, F., et al. 2015, The Radial Variation of H I Velocity Dispersions in Dwarfs and Spirals, AJ, 150, 47 https://doi.org/10.1088/0004-6256/150/2/47
  26. Krumholz, M. R., Bate, M. R., Arce, H. G., et al. 2014, Star Cluster Formation and Feedback, Protostars and Planets VI, Tucson: University of Arizona Press, 243
  27. Krumholz, M. R., Burkhart, B., Forbes, J. C., et al. 2018, A unified model for galactic discs: star formation, turbulence driving, and mass transport, MNRAS, 477, 2716 https://doi.org/10.1093/mnras/sty852
  28. Krumholz, M. R. 2012, Star Formation in Atomic Gas, ApJ, 759, 9 https://doi.org/10.1088/0004-637X/759/1/9
  29. Maloney, P. 1993, Sharp Edges to Neutral Hydrogen Disks in Galaxies and the Extragalactic Radiation Field, ApJ, 414, 41 https://doi.org/10.1086/173055
  30. Mogotsi, K. M., de Blok, W. J. G., Cald'u-Primo, A., et al. 2016, H I and CO Velocity Dispersions in Nearby Galaxies, AJ, 151, 15 https://doi.org/10.3847/0004-6256/151/1/15
  31. Oh, S.-H., de Blok, W. J. G., Brinks, E., et al. 2011, Dark and Luminous Matter in THINGS Dwarf Galaxies, AJ, 141, 193 https://doi.org/10.1088/0004-6256/141/6/193
  32. Oh, S.-H., Hunter, D. A., Brinks, E., et al. 2015, High-resolution Mass Models of Dwarf Galaxies from LITTLE THINGS, AJ, 149, 180 https://doi.org/10.1088/0004-6256/149/6/180
  33. Oh, S.-H., Staveley-Smith, L., & For, B.-Q. 2019, Robust profile decomposition for large extragalactic spectral-line surveys, MNRAS, 485, 5021 https://doi.org/10.1093/mnras/stz710
  34. Park, H.-J., Oh, S.-H., Wang, J., et al. 2022, Gas dynamics and star formation in NGC 6822, AJ, 164, 82 https://doi.org/10.3847/1538-3881/ac7c1b
  35. Patra, N. N. 2020, H I scale height in dwarf galaxies, MNRAS, 495, 2867 https://doi.org/10.1093/mnras/staa1353
  36. Popping, G., P'erez, I., & Zurita, A. 2010, Multiwavelength study of the star-formation in the bar of NGC 2903, A&A, 521, A8 https://doi.org/10.1051/0004-6361/201014183
  37. Renaud, F., Bournaud, F., Kraljic, K., et al. 2014, Starbursts triggered by intergalactic tides andinterstellar compressive turbulence., MNRAS, 442, L33 https://doi.org/10.1093/mnrasl/slu050
  38. Saponara, J., Koribalski, B. S., Patra, N. N., et al. 2020, New HI observations of KK 69. Is KK 69 a dwarf galaxy in transition?, Ap&SS, 365, 111 https://doi.org/10.1007/s10509-020-03825-2
  39. Stilp, A. M., Dalcanton, J. J., Warren, S. R., et al. 2013, Global H I Kinematics in Dwarf Galaxies, ApJ, 765, 136 https://doi.org/10.1088/0004-637X/765/2/136
  40. Tamburro, D., Rix, H.-W., Leroy, A. K., et al. 2009, What is Driving the H I Velocity Dispersion?, AJ, 137, 4424 https://doi.org/10.1088/0004-6256/137/5/4424
  41. Vollmer, B., Balkowski, C., Cayatte, V., et al. 2004, NGC 4569: Recent evidence for a past ram pressure stripping event, A&A, 419, 35 https://doi.org/10.1051/0004-6361:20034552
  42. Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, THINGS: The H I Nearby Galaxy Survey, AJ, 136, 2563 https://doi.org/10.1088/0004-6256/136/6/2563
  43. Wang, J., Koribalski, B. S., Serra, P., et al. 2016, New lessons from the H I size-mass relation of galaxies, MNRAS, 460, 2143 https://doi.org/10.1093/mnras/stw1099
  44. Warren, S. R., Skillman, E. D., Stilp, A. M., et al. 2012, Tracing Cold H I Gas in nearby, Low-mass Galaxies, ApJ, 757, 84 https://doi.org/10.1088/0004-637X/757/1/84
  45. Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, A&AS, 143, 9 https://doi.org/10.1051/aas:2000332
  46. Yadav, J., Das, M., Patra, N. N., et al. 2021, Comparing the Inner and Outer Star-forming Complexes in the Nearby Spiral Galaxies NGC 628, NGC 5457, and NGC 6946 Using UVIT Observations, ApJ, 914, 54 https://doi.org/10.3847/1538-4357/abf8c1
  47. Zwaan, M. A., Meyer, M. J., Staveley-Smith, L., et al. 2005, The HIPASS catalogue: ΩHI and environmental effects on the HI mass function of galaxies, MNRAS, 359, L30 https://doi.org/10.1111/j.1745-3933.2005.00029.x