• Title/Summary/Keyword: galaxies%3A ISM

Search Result 21, Processing Time 0.022 seconds

CHANDRA X-RAY OBSERVATIONS OF EARLY TYPE GALAXIES

  • KIM DONG-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.213-222
    • /
    • 2003
  • We review recent observational results on early type galaxies obtained with high spatial resolution Chandra data. With its unprecedented high spatial resolution, Chandra reveals many intriguing features in early type galaxies which were not identified with the previous X-ray missions. In particular, various fine structures of the hot ISM in early type galaxies are detected, for example, X-ray cavities which are spatially coincident with radio jets/lobes, indicating the interaction between the hot ISM and radio jets. Also point sources (mostly LMXBs) are individually resolved down to Lx = a few x $10^{37}\;erg\;sec^{-1}$ and it is for the first time possible to unequivocally investigate their properties and the X-ray luminosity function. After correcting for incompleteness, the XLF of LMXBs is well reproduced by a single power law with a slope of -1.0 - -1.5, which is in contrast to the previous report on the existence of the XLF break at Lx, Eddington = 2 x $10^{38}\;erg\;sec^{-1}$ (i.e., Eddington luminosity of a neutron star binary). Carefully considering both detected and undetected, hidden populations of point sources we further discuss the XLF of LMXBs and the metal abundance of the hot ISM and their impact on the properties of early type galaxies.

SUPERBUBBLES AS SPACE BAROMETERS

  • GARCIA-SEGURA G.;OEY M. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.217-222
    • /
    • 2004
  • High ambient interstellar pressure is suggested as a possible factor to explain the ubiquitous ob-served growth-rate discrepancy for supernova-driven super bubbles and stellar wind bubbles. Pressures of P / k ${\~} 10^5\;cm^{-3}$ K are plausible for regions with high star formation rates, and these values are intermediate between the estimated Galactic mid-plane pressure and those observed in starburst galaxies. High-pressure components also are commonly seen in Galactic ISM localizations. We demonstrate the sensitivity of shell growth to the ambient pressure, and suggest that super bubbles ultimately might serve as ISM barometers.

A MULTI-WAVELENGTH STUDY OF PAH-SELECTED STARBURST GALAXIES

  • Takagi, T.;Matsuhara, H.;Wada, T.;Ohyama, Y.;Oyabu, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.321-324
    • /
    • 2012
  • Using extensive mid-IR datasets from AKARI, i.e. 9-band photometry covering the wavelength range from $2{\mu}m$ to $24{\mu}m$ and the unbiased spectroscopic survey for sources with $S_{\nu}$($9{\mu}m$)>0.3 mJy, we study starburst galaxies specifically at the redshift of z ~ 0.5, whose mid-IR spectra are clearly dominated by the PAH emission features. PAH-selected galaxies, selected with extremely red mid-IR colour due to PAHs, have high rest-frame PAH-to-stellar luminosity ratios, comparable to those in the most active regions in nearby starburst galaxies. Thus, they seem to have active starburst regions spreading over the whole body. Furthermore, some of PAH-selected galaxies are found to have peculiar rest-frame 11-to-$8{\mu}m$ flux ratios, which is systematically smaller than nearby starburst/AGN spectral templates. This may indicate a systematic difference in the physical condition of ISM between nearby and distant starburst galaxies.

GLOBAL Hɪ PROPERTIES OF GALAXIES VIA SUPER-PROFILE ANALYSIS

  • Kim, Minsu;Oh, Se-Heon
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.5
    • /
    • pp.149-172
    • /
    • 2022
  • We present a new method which constructs an Hɪ super-profile of a galaxy which is based on profile decomposition analysis. The decomposed velocity profiles of an Hɪ data cube with an optimal number of Gaussian components are co-added after being aligned in velocity with respect to their centroid velocities. This is compared to the previous approach where no prior profile decomposition is made for the velocity profiles being stacked. The S/N improved super-profile is useful for deriving the galaxy's global Hɪ properties like velocity dispersion and mass from observations which do not provide sufficient surface brightness sensitivity for the galaxy. As a practical test, we apply our new method to 64 high-resolution Hɪ data cubes of nearby galaxies in the local Universe which are taken from THINGS and LITTLE THINGS. In addition, we also construct two additional Hɪ super-profiles of the sample galaxies using symmetric and all velocity profiles of the cubes whose centroid velocities are determined from Hermite h3 polynomial fitting, respectively. We find that the Hɪ super-profiles constructed using the new method have narrower cores and broader wings in shape than the other two super-profiles. This is mainly due to the effect of either asymmetric velocity profiles' central velocity bias or the removal of asymmetric velocity profiles in the previous methods on the resulting Hɪ super-profiles. We discuss how the shapes (𝜎n/𝜎b, An/Ab, and An/Atot) of the new Hɪ super-profiles which are measured from a double Gaussian fit are correlated with star formation rates of the sample galaxies and are compared with those of the other two super-profiles.

THE 3.3 MICRON PAH EMISSION OF THE MID-INFRARED EXCESS GALAXIES DISCOVERED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Yamada, R.;Oyabu, S.;Kaneda, H.;Yamagishi, M.;Ishihara, D.;Kim, J.H.;Im, M.;Toba, Y.;Matsuhara, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.299-300
    • /
    • 2012
  • We investigate the relation between star formation activity and PAH $3.3{\mu}m$ emission. Our targets are mid-infrared-excess galaxies selected from the AKARI all-sky survey point source catalog. We performed AKARI near-infrared spectroscopy for them. As a result, we obtained $2.5-5{\mu}m$spectra of 79 galaxies, and selected 35 star-forming galaxies out of them. Comparing the PAH $3.3{\mu}m$ luminosities with the infrared luminosities, we find a linear correlation between them. However, by adding the results from literatures for luminous infrared galaxies and ultra-luminous infrared galaxies that are more luminous than our sample, the ratio of the PAH to the infrared luminosity is found to decrease towards the luminous end.

STARBURST AND AGN CONNECTIONS AND MODELS

  • SCOVILLE NICK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.167-175
    • /
    • 2003
  • There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 $L_{\bigodot} / M_{\bigodot}$ for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.

Self-Regulation of Star Formation Rates: an Equilibrium Vieww

  • Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2016
  • In this talk, I will present a theoretical and numerical framework for self-regulation of the star formation rates (SFRs) in disk galaxies. The theory assumes (1) force balance between pressure support and the weight of the interstellar medum (ISM), (2) thermal balance between radiative cooling in the ISM and heating via FUV radiation from massive young stars, and (3) turbulent energy balance between dissipation in the ISM and driving by momentum injection of SNe. Numerical simulations show vigorous dynamics in the ISM at all times, but with proper temporal and spatial averages, all the expected balances hold. This leads to a scaling relation between mean SFRs and galactic gas and stellar properties, arising from the fundamental relationship between SFR surface density and the total midplane pressure.

  • PDF

THE GALACTIC-SCALE MOLECULAR OUTFLOWS IN STARBURST GALAXIES NGC 2146 AND NGC 3628

  • TSAI, AN-LI;MATSUSHITA, SATOKI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.499-502
    • /
    • 2015
  • Starburst galaxies have strong star formation activity and generate large scale outflows which eject a huge amount of gas mass. This process affects galaxy activity, and therefore, the detailed study of nearby starburst galaxies could provide valuable information for the study of distant ones. So far there have been only a few studies of galactic-scale molecular outflows due to the sensitivity limitation of telescopes. Our study provides two nearby examples, NGC 2146 and NGC 3628. We used Nobeyama Millimeter Array (NMA) CO(1-0) data, Chandra soft X-ray data, and NMA 3 mm data to study the kinematics of molecular outflows, their interaction with ionized outflows, and the star forming activity in the starburst region. We found that the gas ejected through molecular outflows is much more significant than that used to form stars.

THE CENTRAL REGION OF THE BARRED SPIRAL GALAXY NGC 1097 PROBED BY AKARI NEAR-INFRARED SPECTROSCOPY

  • Kondo, T.;Kaneda, H.;Oyabu, S.;Ishihara, D.;Mori, T.;Yamagishi, M.;Onaka, T.;Sakon, I.;Suzuki, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.257-258
    • /
    • 2012
  • With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon $3.3{\mu}m$ and the aliphatic hydrocarbon $3.4-3.6{\mu}m$ emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to $H_2O$ ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line $Br{\alpha}$ only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.

INTERSTELLAR ENVIRONMENTS IN THE LARGEMAGELLANIC CLOUD

  • KIM SUNGEUN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2004
  • We present the results of an H I aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact' Array (ATCA) and the Parkes multibeam receiver. The resolution of the mosaiced images is 50" (<15 pc, using a distance to the LMC of 55kpc). This mosaic, with a spatial resolution .15 times higher than that which had been previously obtained, emphasises the turbulent and fractal structure of the ISM on the small scale, resulting from the dynamical feedback of the star formation processes with the ISM. We also have done a widefield panoramic survey of H$\alpha$ emission from the Magellanic Clouds with an imager mounted on the 16-inch telescope at Siding Spring Observatory. This survey produced H$\alpha$ images which are equal to the ATCA survey in area coverage and resolution. This survey allows us to produce a continuum-subtracted image of the entire LMC. In contrast with its appearance in the H$\alpha$ image, the LMC is remarkably symmetric in H I on the largest scales, with the bulk of the H I residing in a disk of diameter 8. $^{\circ}4$ (7.3 kpc) and a spiral structure is clearly seen. The structure of the neutral atomic ISM in the LMC is dominated by H I filaments combined with numerous shells and holes.