DOI QR코드

DOI QR Code

SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression

  • Kim, Hyungmin (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Lee, Jeehan (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Jung, Soon-Young (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Yun, Hye Hyeon (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Ko, Jeong-Heon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Jeong-Hwa (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
  • 투고 : 2022.03.07
  • 심사 : 2022.06.07
  • 발행 : 2022.10.31

초록

Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.

키워드

과제정보

This research was funded by grants from the National Research Foundation of Korea (NRF-2019R1A2C1086949).

참고문헌

  1. Anczukow, O. and Krainer, A.R. (2016). Splicing-factor alterations in cancers. RNA 22, 1285-1301. https://doi.org/10.1261/rna.057919.116
  2. Antoniou, N., Lagopati, N., Balourdas, D.I., Nikolaou, M., Papalampros, A., Vasileiou, P.V.S., Myrianthopoulos, V., Kotsinas, A., Shiloh, Y., Liontos, M., et al. (2019). The role of E3, E4 ubiquitin ligase (UBE4B) in human pathologies. Cancers (Basel) 12, 62. https://doi.org/10.3390/cancers12010062
  3. Bernier, F.P., Caluseriu, O., Ng, S., Schwartzentruber, J., Buckingham, K.J., Innes, A.M., Jabs, E.W., Innis, J.W., Schuette, J.L., Gorski, J.L., et al. (2012). Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am. J. Hum. Genet. 90, 925-933. https://doi.org/10.1016/j.ajhg.2012.04.004
  4. Cassina, M., Cerqua, C., Rossi, S., Salviati, L., Martini, A., Clementi, M., and Trevisson, E. (2017). A synonymous splicing mutation in the SF3B4 gene segregates in a family with highly variable Nager syndrome. Eur. J. Hum. Genet. 25, 371-375. https://doi.org/10.1038/ejhg.2016.176
  5. Castori, M., Bottillo, I., D'Angelantonio, D., Morlino, S., De Bernardo, C., Scassellati Sforzolini, G., Silvestri, E., and Grammatico, P. (2014). A 22-week-old fetus with Nager syndrome and congenital diaphragmatic hernia due to a novel SF3B4 mutation. Mol. Syndromol. 5, 241-244. https://doi.org/10.1159/000365769
  6. Champion-Arnaud, P. and Reed, R. (1994). The prespliceosome components SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site. Genes Dev. 8, 1974-1983. https://doi.org/10.1101/gad.8.16.1974
  7. de Miguel, F.J., Sharma, R.D., Pajares, M.J., Montuenga, L.M., Rubio, A., and Pio, R. (2014). Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in lung cancer. Cancer Res. 74, 1105-1115.
  8. Ding, J., Li, C., Cheng, Y., Du, Z., Wang, Q., Tang, Z., Song, C., Xia, Q., Bai, W., Lin, L., et al. (2021). Alterations of RNA splicing patterns in esophagus squamous cell carcinoma. Cell Biosci. 11, 36. https://doi.org/10.1186/s13578-021-00546-z
  9. Drozniewska, M., Kilby, M.D., Vogt, J., Togneri, F., Quinlan-Jones, E., Reali, L., Allen, S., and McMullan, D. (2020). Second-trimester prenatal diagnosis of Nager syndrome with a deletion including SF3B4 detected by chromosomal microarray. Clin. Case Rep. 8, 508-511. https://doi.org/10.1002/ccr3.2509
  10. Du, C., Wu, H., and Leng, R.P. (2016). UBE4B targets phosphorylated p53 at serines 15 and 392 for degradation. Oncotarget 7, 2823-2836 https://doi.org/10.18632/oncotarget.6555
  11. Gozani, O., Feld, R., and Reed, R. (1996). Evidence that sequenceindependent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 10, 233-243. https://doi.org/10.1101/gad.10.2.233
  12. Guo, R., Li, Y., Ning, J., Sun, D., Lin, L., and Liu, X. (2013). HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells. PLoS One 8, e62729. https://doi.org/10.1371/journal.pone.0062729
  13. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299. https://doi.org/10.1038/387296a0
  14. Havugimana, P.C., Hart, G.T., Nepusz, T., Yang, H., Turinsky, A.L., Li, Z., Wang, P.I., Boutz, D.R., Fong, V., Phanse, S., et al. (2012). A census of human soluble protein complexes. Cell 150, 1068-1081. https://doi.org/10.1016/j.cell.2012.08.011
  15. Hayata, K., Masuyama, H., Eto, E., Mitsui, T., Tamada, S., Eguchi, T., Maki, J., Tani, K., Ohira, A., Washio, Y., et al. (2019). A case of Nager syndrome diagnosed before birth. Acta Med. Okayama 73, 273-277.
  16. Heuze, M.L., Lamsoul, I., Moog-Lutz, C., and Lutz, P.G. (2008). Ubiquitinmediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol. Dis. 40, 200-210. https://doi.org/10.1016/j.bcmd.2007.07.011
  17. Huang, X.Q., Hao, S., Zhou, Z.Q., Huang, B., Fang, J.Y., Tang, Y., Zhang, J.H., and Xia, J.C. (2020). The roles of ubiquitination factor E4B (UBE4B) in the postoperative prognosis of patients with renal cell carcinoma and in renal tumor cells growth and metastasis. Onco Targets Ther. 13, 185-197. https://doi.org/10.2147/OTT.S229577
  18. Iguchi, T., Komatsu, H., Masuda, T., Nambara, S., Kidogami, S., Ogawa, Y., Hu, Q., Saito, T., Hirata, H., Sakimura, S., et al. (2016). Increased copy number of the gene encoding SF3B4 indicates poor prognosis in hepatocellular carcinoma. Anticancer Res. 36, 2139-2144.
  19. Juven-Gershon, T. and Oren, M. (1999). Mdm2: the ups and downs. Mol. Med. 5, 71-83. https://doi.org/10.1007/BF03402141
  20. Kidogami, S., Iguchi, T., Sato, K., Yoshikawa, Y., Hu, Q., Nambara, S., Komatsu, H., Ueda, M., Kuroda, Y., Masuda, T., et al. (2020). SF3B4 plays an oncogenic role in esophageal squamous cell carcinoma. Anticancer Res. 40, 2941-2946. https://doi.org/10.21873/anticanres.14272
  21. Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H.D., Mayer, T.U., and Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635-644. https://doi.org/10.1016/S0092-8674(00)80574-7
  22. Koh, E.Y., You, J.E., Jung, S.H., and Kim, P.H. (2020). Biological functions and identification of novel biomarker expressed on the surface of breast cancer-derived cancer stem cells via proteomic analysis. Mol. Cells 43, 384-396.
  23. Lai, Z., Ferry, K.V., Diamond, M.A., Wee, K.E., Kim, Y.B., Ma, J., Yang, T., Benfield, P.A., Copeland, R.A., and Auger, K.R. (2001). Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J. Biol. Chem. 276, 31357-31367. https://doi.org/10.1074/jbc.M011517200
  24. Lee, J., Seo, G., Hur, W., Yoon, S.K., Nam, S.W., and Lee, J.H. (2020). SRSF3 depletion leads to an increase in SF3B4 expression in SNU-368 HCC cells. Anticancer Res. 40, 2033-2042. https://doi.org/10.21873/anticanres.14160
  25. Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002-2009. https://doi.org/10.1523/JNEUROSCI.4474-04.2005
  26. Liu, Z., Li, W., Pang, Y., Zhou, Z., Liu, S., Cheng, K., Qin, Q., Jia, Y., and Liu, S. (2018). SF3B4 is regulated by microRNA-133b and promotes cell proliferation and metastasis in hepatocellular carcinoma. EBioMedicine 38, 57-68. https://doi.org/10.1016/j.ebiom.2018.10.067
  27. Lv, J., He, Y., Li, L., and Wang, Z. (2020). Alternative splicing events and splicing factors are prognostic in adrenocortical carcinoma. Front. Genet. 11, 918. https://doi.org/10.3389/fgene.2020.00918
  28. Matsumoto, M., Yada, M., Hatakeyama, S., Ishimoto, H., Tanimura, T., Tsuji, S., Kakizuka, A., Kitagawa, M., and Nakayama, K.I. (2004). Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23, 659-669. https://doi.org/10.1038/sj.emboj.7600081
  29. Memarzadeh, K., Savage, D.J., and Bean, A.J. (2019). Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol. Ther. 20, 1416-1429. https://doi.org/10.1080/15384047.2019.1647049
  30. Meza, R., Meernik, C., Jeon, J., and Cote, M.L. (2015). Lung cancer incidence trends by gender, race and histology in the United States, 1973- 2010. PLoS One 10, e0121323. https://doi.org/10.1371/journal.pone.0121323
  31. Mohanty, S., Han, T., Choi, Y.B., Lavorgna, A., Zhang, J., and Harhaj, E.W. (2020). The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-kappaB activation. PLoS Pathog. 16, e1008504. https://doi.org/10.1371/journal.ppat.1008504
  32. Shen, Q., Eun, J.W., Lee, K., Kim, H.S., Yang, H.D., Kim, S.Y., Lee, E.K., Kim, T., Kang, K., Kim, S., et al. (2018). Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology 67, 1360-1377. https://doi.org/10.1002/hep.29606
  33. Shen, Q. and Nam, S.W. (2018). SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma. BMB Rep. 51, 57-58. https://doi.org/10.5483/BMBRep.2018.51.2.021
  34. Subramanian, M., Hyeon, S.J., Das, T., Suh, Y.S., Kim, Y.K., Lee, J.S., Song, E.J., Ryu, H., and Yu, K. (2021). UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat. Commun. 12, 3291. https://doi.org/10.1038/s41467-021-23597-9
  35. Sumithra, B., Jayanthi, V., Manne, H.C., Gunda, R., Saxena, U., and Das, A.B. (2020). Antibody-based biosensor to detect oncogenic splicing factor Sam68 for the diagnosis of lung cancer. Biotechnol. Lett. 42, 2501-2509. https://doi.org/10.1007/s10529-020-02951-9
  36. Treiber, T., Treiber, N., Plessmann, U., Harlander, S., Daiss, J.L., Eichner, N., Lehmann, G., Schall, K., Urlaub, H., and Meister, G. (2017). A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol. Cell 66, 270-284.e13. https://doi.org/10.1016/j.molcel.2017.03.014
  37. Ueno, T., Taga, Y., Yoshimoto, R., Mayeda, A., Hattori, S., and OgawaGoto, K. (2019). Component of splicing factor SF3b plays a key role in translational control of polyribosomes on the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 116, 9340-9349. https://doi.org/10.1073/pnas.1901742116
  38. Wang, L., Zhang, Z., Li, Y., Wan, Y., and Xing, B. (2020). Integrated bioinformatic analysis of RNA binding proteins in hepatocellular carcinoma. Aging (Albany N.Y.) 13, 2480-2505.
  39. Watanabe, H., Shionyu, M., Kimura, T., Kimata, K., and Watanabe, H. (2007). Splicing factor 3b subunit 4 binds BMPR-IA and inhibits osteochondral cell differentiation. J. Biol. Chem. 282, 20728-20738. https://doi.org/10.1074/jbc.M703292200
  40. Weng, C., Chen, Y., Wu, Y., Liu, X., Mao, H., Fang, X., Li, B., Wang, L., Guan, M., Liu, G., et al. (2019). Silencing UBE4B induces nasopharyngeal carcinoma apoptosis through the activation of caspase3 and p53. Onco Targets Ther. 12, 2553-2561. https://doi.org/10.2147/OTT.S196132
  41. Wu, H., Pomeroy, S.L., Ferreira, M., Teider, N., Mariani, J., Nakayama, K.I., Hatakeyama, S., Tron, V.A., Saltibus, L.F., Spyracopoulos, L., et al. (2011). UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat. Med. 17, 347-355. https://doi.org/10.1038/nm.2283
  42. Xu, W., Huang, H., Yu, L., and Cao, L. (2015). Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are upregulated in hepatocellular carcinoma (HCC). Med. Oncol. 32, 96. https://doi.org/10.1007/s12032-014-0425-6
  43. Yan, J., Zhang, D., Han, Y., Wang, Z., and Ma, C. (2019). Antitumor activity of SR splicing-factor 5 knockdown by downregulating pyruvate kinase M2 in non-small cell lung cancer cells. J. Cell. Biochem. 120, 17303-17311. https://doi.org/10.1002/jcb.28992
  44. Yang, S., Hwang, S., Kim, M., Seo, S.B., Lee, J.H., and Jeong, S.M. (2018). Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 9, 55. https://doi.org/10.1038/s41419-017-0089-1
  45. Yun, H.H., Jung, S.Y., Park, B.W., Ko, J.S., Yoo, K., Yeo, J., Kim, H.L., Park, H.J., Youn, H.J., and Lee, J.H. (2021). An adult mouse model of dilated cardiomyopathy caused by inducible cardiac-specific Bis deletion. Int. J. Mol. Sci. 22, 1343. https://doi.org/10.3390/ijms22031343
  46. Yun, H.H., Kim, S., Kuh, H.J., and Lee, J.H. (2020). Downregulation of BIS sensitizes A549 cells for digoxin-mediated inhibition of invasion and migration by the STAT3-dependent pathway. Biochem. Biophys. Res. Commun. 524, 643-648. https://doi.org/10.1016/j.bbrc.2020.01.154
  47. Zage, P.E., Sirisaengtaksin, N., Liu, Y., Gireud, M., Brown, B.S., Palla, S., Richards, K.N., Hughes, D.P., and Bean, A.J. (2013). UBE4B levels are correlated with clinical outcomes in neuroblastoma patients and with altered neuroblastoma cell proliferation and sensitivity to epidermal growth factor receptor inhibitors. Cancer 119, 915-923. https://doi.org/10.1002/cncr.27785
  48. Zhang, S., Bao, Y., Shen, X., Pan, Y., Sun, Y., Xiao, M., Chen, K., Wei, H., Zuo, J., Saffen, D., et al. (2020). RNA binding motif protein 10 suppresses lung cancer progression by controlling alternative splicing of eukaryotic translation initiation factor 4H. EBioMedicine 61, 103067. https://doi.org/10.1016/j.ebiom.2020.103067
  49. Zhang, X.F., Pan, Q.Z., Pan, K., Weng, D.S., Wang, Q.J., Zhao, J.J., He, J., Liu, Q., Wang, D.D., Jiang, S.S., et al. (2016). Expression and prognostic role of ubiquitination factor E4B in primary hepatocellular carcinoma. Mol. Carcinog. 55, 64-76. https://doi.org/10.1002/mc.22259
  50. Zhang, Y., Lv, Y., Zhang, Y., and Gao, H. (2014). Regulation of p53 level by UBE4B in breast cancer. PLoS One 9, e90154. https://doi.org/10.1371/journal.pone.0090154
  51. Zhao, J. and Yang, L. (2020). Broad-spectrum next-generation sequencingbased diagnosis of a case of Nager syndrome. J. Clin. Lab. Anal. 34, e23426. https://doi.org/10.1002/jcla.23426
  52. Zhou, W., Ma, N., Jiang, H., Rong, Y., Deng, Y., Feng, Y., Zhu, H., Kuang, T., Lou, W., Xie, D., et al. (2017). SF3B4 is decreased in pancreatic cancer and inhibits the growth and migration of cancer cells. Tumour Biol. 39, 1010428317695913.