DOI QR코드

DOI QR Code

Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer

광활성층 사용물질에 따라 변화하는 유기태양전지의 효율

  • Kim, Yu-Eun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Gi-Hwan (School of Materials Science and Engineering, Gyeongsang National University)
  • 김유은 (경상국립대학교 나노신소재공학부) ;
  • 김기환 (경상국립대학교 나노신소재공학부)
  • Received : 2022.08.04
  • Accepted : 2022.08.19
  • Published : 2022.11.01

Abstract

As energy depletion and environmental pollution problems are intensified, research has been conducted actively on alternative energy sources, an eco-friendly and continuous available energy conversion system. So has been organic solar cells whose efficiency is improved to 18.32%. The photoactive layer inside the solar cell is composed of a donor and a acceptor, and the combination of materials capable of effectively exchanging electrons greatly affects the efficiency of the organic solar cell. Accordingly, various researches have been conducted to improve the efficiency, and the maximum efficiency could be achieved by a solar cell with high carrier generation and low charge recombination characteristics through the introduction of a non-fullerene acceptor and material reconstruction. Organic solar cells are still difficult to commercialize due to their efficiency limitations and light stability, but if a photoactive layer consisting of a donor capable of efficiently absorbing long-wavelength light and an acceptor capable of forming an appropriate energy level is designed, the efficiency of the organic solar cell will reach 20%.

Keywords

References

  1. G. G. Kim, Bulletin of the Korea Photovoltaic Society., 3, 17 (2017).
  2. K. H. Hong, S. Y. Park, and D. C. Lim, Appl. Chem. Eng., 25, 447 (2014). [DOI: https://doi.org/10.14478/ace.2014.1110]
  3. H. S. Choi and J. Y. Kim, J. Photopolym. Sci. Technol., 23, 361 (2012).
  4. S. H. Jin and S. S. Shin, Polymer Science and Technology., 17, 416 (2006).
  5. G. H. Lee, Optical Science and Technology, 16, 18 (2012).
  6. B. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 10 (2015).
  7. KiSTi, Korea Institute of Science and Technology Information., 93560 (2017).
  8. D. C. Lim, J. U. Kang, and S.Y. Park, State of the Art Report., 23, 6 (2011).
  9. I. H. Kim, Molecular design of donor-acceptor small conjugated molecules and polymers for organic solar cells, 38p. (2015).
  10. C. W. Tang, Appl. Phys. Lett., 48, 183 (1986). [DOI: https://doi.org/10.1063/1.96937]
  11. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature, 395, 257 (1998). [DOI: https://doi.org/10.1038/26183]
  12. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995). [DOI: https://doi.org/10.1126/science.270.5243.1789]
  13. P. Peumans and S. R. Forrest, Appl. Phys. Lett., 79, 126 (2001). [DOI: https://doi.org/10.1063/1.1384001]
  14. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett., 84, 3013 (2004). [DOI: https://doi.org/10.1063/1.1713036]
  15. T. U. Gang, T. S, Kim, and B. J. Kim, Information Display, 16, 4 (2015).
  16. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). [DOI: https://doi.org/10.1002/adfm.200500211]
  17. Q. An, J. Wang, X. Ma, J. Gao, Z. Hu, B. Liu, H. Sun, X. Guo, X. L. Zhang, and F. Zhang, Energy Environ. Sci., 13, 5039 (2020). [DOI: https://doi.org/10.1039/d0ee02516j]
  18. J. H. Lee, I. S. Sin and S. H. Park, Polym. Sci. Technol., 23, 386 (2012).
  19. J. Subbiah, B. Purushothaman, M. Chen, T. Qin, M. Gao, D. Vak, F. H. Scholes, X. Chen, S. E. Watkins, G. J. Wilson, A. B. Holmes, W.W.H. Wong, and D. J. Jones, Adv. Mater., 27, 702 (2015). [DOI: https://doi.org/10.1002/adma.201403080]
  20. T. Xu and L. Yu, Mater. Today, 17, 11 (2014). [DOI: https://doi.org/10.1016/j.mattod.2013.12.005]
  21. H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics, 3, 649 (2009). [DOI: https://doi.org/10.1038/NPHOTON.2009.192]
  22. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008). [DOI: https://doi.org/10.1021/ja0771989]
  23. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics, 6, 591 (2012). [DOI: https://doi.org/10.1038/nphoton.2012.190]
  24. S. H. Liao, H. J. Jhuo, Y. S. Cheng, and S. A. Chen, Adv, Mater., 25, 4766 (2013). [DOI: https://doi.org/10.1002/adma.201301476]
  25. J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, Adv. Mater., 27, 1035 (2015). [DOI: https://doi.org/10.1002/adma.201404535]
  26. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, and J. Hou, Adw, Mater., 28, 4734 (2016). [DOI: https://doi.org/10.1002/adma.201600281]
  27. Y. Yang, Z. G. Zhang, H. J. Bin, S. Chen, L. Gao, L. Xue, C. Yang, and Y. Li, J. Am. Chem. Soc., 138, 15011 (2016). [DOI: https://doi.org/10.1021/jacs.6b09110]
  28. R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu. B. Oiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, Joule., 4, 407 (2020). [DOI: https://doi.org/10.1016/j.joule.2019.12.004]
  29. Q. Guo, Q. Guo, Y. Geng, A. Tang, M. Zhang, M. Du, X. Sun, and E. Zhou, Mater. Chem. Front., 5, 3257 (2021). [DOI: https://doi. org/10.1039/D1QM00060H]
  30. L. Zhu, W. Zhong, C. Qiu, B. Lyu, Z. Zhou, M. Zhang, J. Song, J. Xu, J. Wang, J. Ali, W. Feng, Z. Shi, X, Gu, L. Ying, Y. Zhang, and F. Liu, Adv. Mater., 31, 1902899 (2019). [DOI: https://doi.org/10.1002/adma.201902899]
  31. J. W. Lee, KIC News., 24, 134 (2021).
  32. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv, Funct, Mater., 13, 85 (2003). [DOI: https://doi.org/10.1002/adfm.200390011]
  33. C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Nat. Energy., 6, 605 (2021). [DOI: https://doi.org/10.1038/s41560-021-00820-x]
  34. R. Zhou, Z. Jiang, C. Yang, J. Yu, J. Feng, M. A. Adil, D. Deng, W. Zou, J. Zhang, K. Lu, W. Ma, F. Gao, and Z. Wei, Nat. Commun., 10, 5393 (2019). [DOI: https://doi.org/10.1038/s41467-019-13292-1]
  35. X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, Adv. Mater., 30, 1703973 (2018). [DOI: https://doi.org/10.1002/adma.201703973]
  36. L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics, 6, 180 (2012). [DOI: https://doi.org/10.1038/nphoton.2011.356]
  37. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Joule, 3, 1140 (2019). [DOI: https://doi.org/10.1016/j.joule.2019.01.004]
  38. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 4, 864 (2005). [DOI: https://doi.org/10.1038/nmat1500]
  39. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater., 6, 497 (2007). [DOI: https://doi.org/10.1038/NMAT1928]
  40. W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, Adv. Mater., 29, 1604059 (2016). [DOI: https://doi.org/10.1002/adma.201604059]
  41. H. Bin, Z. G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, J. Am. Chem. Soc., 138, 4657 (2016). [DOI: https://doi.org/10.1021/jacs.6b01744]
  42. H. Hoppe and N. S. Sariciftci, J. Mater. Res., 19, 1924 (2004). [DOI: https://doi.org/10.1557/JMR.2004.0252]
  43. Y. Xiao, H. Wang, S. Zhou, K. Yan, W. Xie, Z. Guan, S. W. Tsang, and J. B. Xu, Nano Energy, 19, 476 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2015.11.016]